Abstract
Machine learning and data mining approaches are being successfully applied to different fields of life sciences for the past 20 years. Medicine is one of the most suitable application domains for these techniques since they help model diagnostic information based on causal and/or statistical data and therefore reveal hidden dependencies between symptoms and illnesses. In this paper we give a detailed overview of the recent machine learning research and its applications for predicting cognitive diseases, especially the Alzheimer’s disease, mild cognitive impairment and the Parkinson’s disease. We survey different state-of-the-art methodological approaches, data sources and public data, and provide their comparative analysis. We conclude by identifying the open problems within the field that include an early detection of the cognitive diseases and inclusion of machine learning tools into diagnostic practice and therapy planning.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
The addneuromed study. https://www.synapse.org/#!Synapse:syn2790911/wiki/235387
Alzheimers disease neuroimaging initiative (ADNI) database. http://adni.loni.usc.edu
Challenge on computer-aided diagnosis of dementia based on structural MRI data. http://caddementia.grand-challenge.org/home
Open access series of imaging studies (OASIS) database. http://www.oasis-brains.org
Agrell, B., and Dehlin, O.: The clock-drawing test. Age and ageing 27(3), 399–404 (1998)
Aha, D.W., Kibler, D., and Albert, M.K., Instance-based learning algorithms. Mach. Learn. 6(1):37–66, 1991.
Beekly, D.L., Ramos, E.M., Lee, W.W., Deitrich, W.D., Jacka, M.E., Wu, J., Hubbard, J.L., Koepsell, T.D., Morris, J.C., Kukull, W.A., et al., The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Dis. Assoc. Disord. 21(3):249–258, 2007.
Beekly, D.L., Ramos, E.M., Van Belle, G., Deitrich, W., Clark, A.D., Jacka, M.E., Kukull, W.A., et al., The National Alzheimer’s Coordinating Center (NACC) database: an Alzheimer disease database. Alzheimer Dis. Assoc. Disord. 18(4):270–277, 2004.
Bennasar, M., Setchi, R., Hicks, Y., and Bayer, A.: Cascade classifcation for diagnosing dementia. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), IEEE, pp. 2535–2540, 2014.
Birvinskas, D., Jusas, V., Martisius, I., and Damasevicius, R., Fast DCT algorithms for EEG data compression in embedded systems. Comput. Sci. Info. Syst. 12(1):49–62, 2015.
Burge, J., Clark, V.P., Lane, T., Link, H., and Qiu, S.: Bayesian classification of FMRI data: Evidence for altered neural networks in dementia. University of New Mexico, Tech. Rep TR-CS-2004-28, 2004
Buza, K., and Varga, N.Á., Parkinsonet: estimation of updrs score using hubness-aware feedforward neural networks. Appl. Artif. Intell. 30(6):541–555, 2016.
Challis, E., Hurley, P., Serra, L., Bozzali, M., Oliver, S., and Cercignani, M., Gaussian process classification of alzheimer’s disease and mild cognitive impairment from resting-state fmri. NeuroImage 112:232–243, 2015.
Chan, K.C.: A statistical technique for extracting classificatory knowledge from databases. Knowledge discovery in databases, pp. 107–123, 1991
Chen, R., and Herskovits, E.H., Machine-learning techniques for building a diagnostic model for very mild dementia. Neuroimage 52(1):234–244, 2010.
Cho, Y., Seong, J.K., Jeong, Y., Shin, S.Y., Initiative, A.D.N., et al., Individual subject classification for alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 59(3):2217–2230 , 2012.
Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., Initiative, A.D.N., et al., Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 60(1):59–70, 2012.
Chupin, M., Gėrardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehėricy, S., Benali, H., Garnero, L., and Colliot, O., Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6):579–587, 2009.
Chupin, M., Hammers, A., Liu, R.S., Colliot, O., Burdett, J., Bardinet, E., Duncan, J.S., Garnero, L., and Lemieux, L., Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints: method and validation. Neuroimage 46(3):749–761, 2009.
Colliot, O., Chételat, G., Chupin, M., Desgranges, B., Magnin, B., Benali, H., Dubois, B., Garnero, L., Eustache, F., and Lehėricy, S., Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248(1):194–201, 2008.
Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O., Initiative, A.D.N., et al., Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 56(2):766–781, 2011.
Datta, P., Shankle, W.R., and Pazzani, M.: Applying machine learning to an alzheimer’s database. In: Artificial Intelligence in Medicine: AAAI-96 Spring Symposium, pp. 26–30, 1996.
Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., Schmansky, N.J., Greve, D.N., Salat, D.H., Buckner, R.L., et al., Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 132(8):2048–2057, 2009.
Doecke, J.D., Laws, S.M., Faux, N.G., Wilson, W., Burnham, S.C., Lam, C.P., Mondal, A., Bedo, J., Bush, A.I., Brown, B., et al., Blood-based protein biomarkers for diagnosis of alzheimer disease. Arch. Neurol. 69(10):1318–1325, 2012.
DUDA/HART: Pattern classification and scene analysis. John Wiley, 1973
Dyrba, M., Ewers, M., Wegrzyn, M., Kilimann, I., Plant, C., Oswald, A., Meindl, T., Pievani, M., Bokde, A.L., Fellgiebel, A., et al., Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data. PloS One 8(5): e64925, 2013.
Ellis, K.A., Bush, A.I., Darby, D., De Fazio, D., Foster, J., Hudson, P., Lautenschlager, N.T., Lenzo, N., Martins, R.N., Maruff, P., et al., The australian imaging, biomarkers and lifestyle (aibl) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of alzheimer’s disease. Int. Psychogeriatr. 21(4):672–687, 2009.
Ewers, M., Walsh, C., Trojanowski, J.Q., Shaw, L.M., Petersen, R.C., Jack, C.R., Feldman, H.H., Bokde, A.L., Alexander, G.E., Scheltens, P., et al., Prediction of conversion from mild cognitive impairment to alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol. Aging 33(7):1203–1214, 2012.
Fillenbaum, G.G., Heyman, A., Wilkinson, W.E., and Haynes, C.S., Comparison of two screening tests in Alzheimer’s disease: The correlation and reliability of the mini-mental state examination and the modified blessed test. Arch. Neurol. 44(9):924–927, 1987.
Folstein, M.F., Folstein, S.E., and Mchugh, P.R., “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12(3):189–198, 1975.
Galili, T., Mitelpunkt, A., Shachar, N., Marcus-Kalish, M., and Benjamini, Y.: Categorize, cluster, and classify: a 3-c strategy for scientific discovery in the medical informatics platform of the human brain project. In: International Conference on Discovery Science, pp. 73–86. Springer, 2014.
Garrard, P., Rentoumi, V., Gesierich, B., Miller, B., and Gorno-Tempini, M.L., Machine learning approaches to diagnosis and laterality effects in semantic dementia discourse. Cortex 55:122–129, 2014.
Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer, M., Dubois, B., Lehéricy, S., Garnero, L., et al., Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 47 (4):1476–1486, 2009.
Gomar, J.J., Bobes-Bascaran, M.T., Conejero-Goldberg, C., Davies, P., Goldberg, T.E., Initiative, A.D.N., et al., Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to alzheimer disease in patients in the alzheimer’s disease neuroimaging initiative. Arch. Gen. Psychiatr. 68(9):961–969, 2011.
Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., Initiative, A.D.N., et al., Random forest-based similarity measures for multi-modal classification of alzheimer’s disease. NeuroImage 65: 167–175, 2013.
Gray, K.R., Wolz, R., Heckemann, R.A., Aljabar, P., Hammers, A., Rueckert, D., Initiative, A.D.N., et al., Multi-region analysis of longitudinal fdg-pet for the classification of alzheimer’s disease. Neuroimage 60(1):221–229, 2012.
Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M.K., Johnson, S.C., Initiative, A.D.N., et al., Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 48(1):138–149, 2009.
Hosseini-Asl, E., Gimel’farb, G.L., and El-Baz, A.: Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv:1607.00556, 2016
Huang, M., Yang, W., Feng, Q., Chen, W., Initiative, A.D.N., et al.: Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease. Scientific reports 7, 2017
Imam, I., Michalski, R., and Kerschberg, L.: Discovering attribute dependence in databases by integrating symbolic learning and statistical analysis techniques. In: Proceeding of the AAAI-93 Workshop on Knowledge Discovery in Databases, Washington DC, 1993.
Ishihara, S., and Force, R.A.A., Ishihara Tests for Colour Blindness. Sydney: Shephard & Newman, 1943.
Jones, D.K., and Leemans, A.: Diffusion tensor imaging. Magnetic Resonance Neuroimaging: Methods and Protocols pp. 127–144, 2011
Joshi, S., Shenoy, P.D., GG, V.S., Venugopal, K., and Patnaik, L., Classification of neurodegenerative disorders based on major risk factors employing machine learning techniques. Int. J. Eng. Technol. 2(4):350, 2010.
Jurica, P., Mattis, S., and Leitten, C.: Dementia Rating Scale-2: DRS-2. Psychological Assessment Resources (2001). https://books.google.si/books?id=c5iKjwEACAAJ
Kippenhan, J.S., Barker, W.W., Pascal, S., Nagel, J.H., and Duara, R.: Evaluation of a neural-network classifier for pet scans of normal and alzheimer’s disease subjects, 1992
Klein, S., Loog, M., van der Lijn, F., den Heijer, T., Hammers, A., de Bruijne, M., van der Lugt, A., Duin, R.P., Breteler, M.M., and Niessen, W.J.: Early diagnosis of dementia based on intersubject whole-brain dissimilarities. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, IEEE, pp. 249–252, 2010.
Li, J., Wang, Z.J., and McKeown, M.J.: A framework for group analysis of fmri data using dynamic bayesian networks. In: 2007 29Th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5991–5994, 2007. https://doi.org/10.1109/IEMBS.2007.4353713
Liu, M., Zhang, D., Shen, D., Initiative, A.D.N., et al., Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60(2):1106–1116, 2012.
Llano, D.A., Devanarayan, V., Simon, A.J., et al., and (ADNI, A. D. N. I., Evaluation Of plasma proteomic data for alzheimer disease state classification and for the prediction of progression from mild cognitive impairment to alzheimer disease. Alzheimer Dis. Assoc. Disord. 27(3):233–243, 2013.
López, M., Ramírez, J., Górriz, J. M., Álvarez, I., Salas-Gonzalez, D., Segovia, F., Chaves, R., Padilla, P., Gómez-Río, M., Initiative, A.D.N., et al., Principal component analysis-based techniques and supervised classification schemes for the early detection of alzheimer’s disease. Neurocomputing 74(8):1260–1271, 2011.
Meszlényi, R. J., Buza, K., and Vidnyánszky, Z., Resting state fmri functional connectivity-based classification using a convolutional neural network architecture. Frontiers in Neuroinformatics 11:61, 2017.
Miller, V.A., Erlien, S., and Piersol, J.: Support vector machine classification of dimensionally reduced structural mri images for dementia. arXiv:1406.6568, 2014
Moradi, E., Gaser, C., Huttunen, H., and Tohka, J.: Alzheimerr’s: MRI based dementia classification using semi-supervised learning and domain adaption. pp. 65–73, 2014
Morales, D.A., Vives-Gilabert, Y., Gómez-Ansón, B., Bengoetxea, E., Larrañaga, P., Bielza, C., Pagonabarraga, J., Kulisevsky, J., Corcuera-Solano, I., and Delfino, M., Predicting dementia development in Parkinson’s disease using bayesian network classifiers. Psychiatry Res. Neuroimaging 213(2):92–98, 2013.
Morris, J.C., Weintraub, S., Chui, H.C., Cummings, J., DeCarli, C., Ferris, S., Foster, N.L., Galasko, D., Graff-Radford, N., Peskind, E.R., et al.: The uniform data set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers, Vol. 20, 2006
Murphy, K.P.: Dynamic bayesian networks. Probabilistic Graphical Models, M. Jordan 7, 2002
Patil, M., and Yardi, A., MLP Classifier for dementia levels. Int. J. Model. Optim. 2(5):567, 2012.
Payan, A., and Montana, G.: Predicting alzheimer’s disease: a neuroimaging study with 3d convolutional neural networks. arXiv:1502.02506, 2015
Pfeffer, R., Kurosaki, T., Harrah, C., Chance, J., and Filos, S., Measurement of functional activities in older adults in the community. J. Gerontol. 37(3):323–329, 1982.
Polikar, R., Topalis, A., Parikh, D., Green, D., Frymiare, J., Kounios, J., and Clark, C.M., An ensemble based data fusion approach for early diagnosis of alzheimer’s disease. Inf. Fusion 9(1):83–95, 2008.
Pritchard, W.S., Duke, D.W., Coburn, K.L., Moore, N.C., Tucker, K.A., Jann, M.W., and Hostetler, R.M., Eeg-based, neural-net predictive classification of alzheimer’s disease versus control subjects is augmented by non-linear eeg measures. Electroencephalogr. Clin. Neurophysiol. 91(2):118–130, 1994.
Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Démonet, J. F., Duret, V., Puel, M., Berry, I., Fort, J.C., Celsis, P., et al., Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132(8):2036–2047, 2009.
Quinlan, J.R.: C4. 5: programs for machine learning. Elsevier, 2014
Ray, S., Britschgi, M., Herbert, C., Takeda-Uchimura, Y., Boxer, A., Blennow, K., Friedman, L.F., Galasko, D.R., Jutel, M., Karydas, A., et al., Classification and prediction of clinical alzheimer’s diagnosis based on plasma signaling proteins. Nat. Med. 13(11):1359–1362, 2007.
Roher, A.E., Weiss, N., Kokjohn, T.A., Kuo, Y.M., Kalback, W., Anthony, J., Watson, D., Luehrs, D.C., Sue, L., Walker, D., et al., Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41(37):11080–11090, 2002.
Schmitter-Edgecombe, M., Parsey, C., and Cook, D.J., Cognitive correlates of functional performance in older adults: comparison of self-report, direct observation, and performance-based measures. J. Int. Neuropsychol. Soc. 17(05):853–864, 2011.
Schmitter-Edgecombe, M., Woo, E., and Greeley, D.R., Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment. Neuropsychology 23(2):168, 2009.
Shankle, W.R., Datta, P., Dillencourt, M., and Pazzani, M.: Improving dementia screening tests with machine learning methods. Alzheimer’s Research 2(3), 1996
Shankle, W.R., Mani, S., Pazzani, M.J., and Smyth, P.: Detecting very early stages of dementia from normal aging with machine learning methods. In: Conference on Artificial Intelligence in Medicine in Europe, pp. 71–85. Springer, 1997.
Shanklea, W., Mani, S., Dick, M.B., and Pazzani, M.J.: Simple models for estimating dementia severity using machine learning. Studies in health technology and informatics (1) 472–476 , 1998
Suk, H.I., Lee, S.W., Shen, D., Initiative, A.D.N., et al., Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101:569–582, 2014.
Szenkovits, A., Meszlényi, R., Buza, K., Gaskó, N., Lung, R.I., and Suciu, M.: Feature selection with a genetic algorithm for classification of brain imaging data. In: Advances in Feature Selection for Data and Pattern Recognition, pp. 185–202. Springer, 2018.
Tierney, M., Szalai, J., Snow, W., Fisher, R., Nores, A., Nadon, G., Dunn, E., and George-Hyslop, P.S., Prediction of probable alzheimer’s disease in memory-impaired patients a prospective longitudinal study. Neurology 46(3):661–665, 1996.
Weintraub, S., Salmon, D., Mercaldo, N., Ferris, S., Graff-Radford, N.R., Chui, H., Cummings, J., DeCarli, C., Foster, N.L., Galasko, D., et al., The Alzheimer’s disease centers’ uniform data set (UDS): The neuropsychological test battery. Alzheimer Dis. Assoc. Disord. 23(2):91, 2009.
Williams, J.A., Weakley, A., Cook, D.J., and Schmitter-Edgecombe, M.: Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementia. In: Workshops at the Twenty-Seventh AAAI Conference on Artificial Intelligence, 2013.
Wu, X., Zhu, X., Wu, G.Q., and Ding, W., Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1):97–107, 2014.
Zaffalon, M.: Statistical inference of the naive credal classifier. In: ISIPTA, Vol. 1, pp. 384–393, 2001.
Zaffalon, M., The naive credal classifier. J. Stat. Plan. Infer. 105(1):5–21, 2002.
Zaffalon, M., Wesnes, K., and Petrini, O., Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artif. Intell. Med. 29(1):61–79, 2003.
Zhang, D., Shen, D., Initiative, A.D.N., et al., Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer’s disease. NeuroImage 59(2):895–907, 2012.
Zhang, Y., Dong, Z., Phillips, P., Wang, S., Ji, G., Yang, J., and Yuan, T.F., Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9:66, 2015.
Funding
This work is supported by the bilateral project between Slovenia and Serbia: BI-RS/16-17-047, “Intelligent computer techniques for improving medical detection, analysis and explanation of human cognition and behavior disorders” between the Ministry of Education, Science and Technological Development of the Republic of Serbia and the Slovenian Research Agency. B. Bratić, V. Kurbalija and M. Ivanović also thank the Ministry of Education, Science and Technological Development of the Republic of Serbia for additional support through project no. OI174023, “Intelligent techniques and their integration into wide-spectrum decision support”.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interests
The authors declare that they have no conflict of interest.
Additional information
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
This article is part of the Topical Collection on Systems-Level Quality Improvement
Rights and permissions
About this article
Cite this article
Bratić, B., Kurbalija, V., Ivanović, M. et al. Machine Learning for Predicting Cognitive Diseases: Methods, Data Sources and Risk Factors. J Med Syst 42, 243 (2018). https://doi.org/10.1007/s10916-018-1071-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10916-018-1071-x