Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A Review of Simulators with Haptic Devices for Medical Training

  • Education & Training
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Vanlehn, K., The Behavior of Tutoring Systems. Int. J. Artif. Intell. Educ. 16(3):227–265.

  2. Gazibara, T, Marusic, V., Maric, G., Zaric, M., Vujcic, I., Kisic-Tepavcevic, D., Maksimovic, J., Maksimovic, N., Denic, L. M., Grujicic, S. S., Pekmezovic, T., Grgurevic, A., Introducing E-learning in Epidemiology Course for Undergraduate Medical Students at the Faculty of Medicine, University of Belgrade: A Pilot Study. J. Med. Syst. 40(3):1–12 , 2015.

    Google Scholar 

  3. Ito, M., Sugito, M., Kobayashi, A., Nishizawa, Y., Tsunoda, Y., Saito, N., Influence of learning curve on short-term results after laparoscopic resection for rectal cancer. Surg. Endosc. 23(2):403–408, 2009.

    Article  PubMed  Google Scholar 

  4. Tseng, J. F., Pisters, P. W., Lee, J. E., Wang, H., Gómez, H. F., Sun, C. C., Evans, D. B., The learning curve in pancreatic surgery. Surgery 141(4):456–463, 2007.

    Article  PubMed  Google Scholar 

  5. Vickers, A.J., Savage, C.J., Hruza, M., Tuerk, I., Koenig, P., Martínez-Piñeiro, L., Janetschek, G., Guillonneau, B., The surgical learning curve for laparascopic compared to open radical prostatectomy: a retrospective cohort study. Lancet Oncol. 10(5):475–480, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lau, F., and Bates, J., A review of e-learning practices for undergraduate medical education. J. Med. Syst. 28(1):71–87 , 2004.

    Article  PubMed  Google Scholar 

  7. Juanes, J. A., and Ruisoto, P., Computer applications in health science education. J. Med. Syst. 39(9):1–5, 2015.

    Article  Google Scholar 

  8. Secin, F. P., Savage, C., Abbou, C., de La Taille, A., Salomon, L., Rassweiler, J., Hruza, M., Rozet, F., Cathelineau, X., Janetschek, G., Nassar, F., Turk, I., Vanni, A. J., Gill, I. S., Koenig, P., Kaouk, J. H., Martinez Pineiro, L., Pansadoro, V., Emiliozzi, P., Bjartell, A., Jiborn, T., Eden, C., Richards, A.J., Van Velthoven, R., Stolzenburg, J.-U., Rabenalt, R., Su, L.-M., Pavlovich, C. P., Levinson, A.W., Touijer, K.A., Vickers, A., Guillonneau, B., The learning curve for laparoscopic radical prostatectomy: an international multicenter study. J. Urol. 184(6):2291–2296 , 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coles, T.R., Meglan, D., John, N.W., The Role of Haptics in Medical Training Simulators : A Survey of the State of the Art. IEEE Trans. Haptic 4(1):51–66, 2011.

    Article  CAS  Google Scholar 

  10. Cotin, S., Delingette, H., Ayache, N., Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation. IEEE Trans. Vis. Comput. Graph. 5(1):62–73, 1999.

    Article  Google Scholar 

  11. Brown, J., Sorkina, S., Latombea, J. -C., Montgomery, K., Stephanides, M., Algorithmic Tools for Real-Time Microsurgery Simulation. Med. Image Anal. 6(3):289–300, 2002.

    Article  PubMed  Google Scholar 

  12. Immersion Medical, Medical Solutions, [accessed Oct-15-2014]. http://www.immersion.com/markets/medical/solutions/index.html

  13. Mentice, About us, [accessed Oct-15-2014]. http://www.mentice.com/about-us/

  14. ReachIn Technologies, About ReachIn Technologies, [accessed Oct-15-2014]. http://www.reachin.se/companyinfo/

  15. Science, Surgical, About us, [accessed Oct-15-2014]. http://www.surgical-science.com/surgical-science/about-us/

  16. Simbionix, GI Mentor, [accessed Jan-18-2016]. http://simbionix.com/simulators/gi-mentor/

  17. CAE Healthcare, CAE Healthcare, [accessed Feb-15-2015]. http://www.caehealthcare.com/eng/

  18. Basdogan, C., and Srinivasan, M.A.: Haptic Rendering in Virtual Environments. In: Handbook of Virtual Environments, 2002, pp. 117–134

  19. Massie, T.H., Design of a Three Degree of Freedom Force-Reflecting Haptic Interface, Ph.D. thesis, 1993.

  20. Van der Linde, R.Q., Lammertse, P., Frederiksen, E., Ruiter, B.: The hapticmaster, a new high-performance haptic interface. In: Proc. Euro-haptics (2002), pp. 1–5

  21. Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H., Srinivasan, M. A., Haptics in minimally invasive surgical simulation. IEEE Comput. Graph. Appl. 24(2):56–64, 2004.

    Article  PubMed  Google Scholar 

  22. Marshall, P., Payandeh, S., Dill, J.: A study on haptic rendering in a simulated surgical training environment. In: 14th symposium on haptic interfaces for virtual environment and teleoperator systems, 2006, pp. 241–247

  23. Jia, S., and Pan, Z.: A preliminary study of suture simulation in virtual surgery. In: International conference on audio language and image processing (ICALIP), 2010, pp. 1340–1345

  24. Brown, J., Latombe, J.-C., Montgomery, K., Real-time knot-tying simulation. Vis. Comput. 20(2-3): 165–179, 2004.

    Article  Google Scholar 

  25. Payandeh, S., and Shi, F., Interactive multi-modal suturing. Virtual Reality 14(4):241–253, 2010.

    Article  Google Scholar 

  26. Ricardez, E., Noguez, J., Neri, L., Munoz-Gomez, L., Escobar-Castillejos, D.: SutureHap : A suture simulator with haptic feedback. In: Workshop on virtual reality interaction and physical simulation VRIPHYS, 2014, pp. 79–86

  27. Choi, K.-S., Chan, S.-H., Pang, W.-M., Virtual suturing simulation based on commodity physics engine for medical learning. J. Med. Syst. 36(3):1781–1793, 2012.

    Article  PubMed  Google Scholar 

  28. Salisbury, K., Conti, F., Barbagli, F., Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24(2):24–32, 2004.

    Article  PubMed  Google Scholar 

  29. Min, L., Faragasso, A., Konstantinova, J., Aminzadeh, V., Seneviratne, L., Dasgupta, P., Althoefer, K.: A novel tumor localization method using haptic palpation based on soft tissue probing data. In: IEEE international conference on robotics and automation (ICRA), 2014, pp. 4188–4193

  30. Ullrich, S., and Kuhlen, T., Haptic palpation for medical simulation in virtual environments. IEEE Trans. Vis. Comput. Graph. 18(4):617–625, 2012.

    Article  PubMed  Google Scholar 

  31. Coumans, E.: Bullet physics library, [accessed April-15-2015]. http://bulletphysics.org/wordpress/

  32. Coles, T., John, N., Gould, D., Caldwell, D., Integrating haptics with augmented reality in a femoral palpation and needle insertion training simulation. IEEE Trans. Haptic 4(3):199–209, 2011.

    Article  CAS  Google Scholar 

  33. Phantom Head Dental Ltd, Phantom Head, [accessed Oct-15-2014]. http://www.phantomhead.com/

  34. Tse, B., Harwin, W., Barrow, A., Quinn, B., San Diego, J., Cox, M.: Design and development of a haptic dental training system - hapTEL. In: Vol. 6192 of Lecture Notes in Computer Science - Haptics: Generating and Perceiving Tangible Sensations, Springer Berlin Heidelberg, pp. 101–108 (2010)

  35. Si, H., Tetgen, [accessed Oct-15-2014]. http://wias-berlin.de/software/tetgen/

  36. Chen, X., Lin, Y., Wang, C., Shen, G., Wang, X.: A virtual training system using a force feedback haptic device for oral implantology. In: Transactions on edutainment VIII, Springer Berlin Heidelberg, 2012, pp. 232–240

  37. Kosuki, Y., Okada, Y., 3D visual component based development system for medical training systems supporting haptic devices and their collaborative environments. In: Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), 2012, pp. 687–692

  38. Hui, Z., and Dang-xiao, W.: Soft tissue simulation with bimanual force feedback. In: International conference on audio language and image processing (ICALIP), 2010, pp. 903–907

  39. Yanng, B., Intelligent learning system based on HMM model, 2011 Intl. Symposium on Knowledge Acquisition and Modeling (KAM),560–564, 2011.

  40. Okada, Y., and Tanaka, Y.: Intelligentbox: A constructive visual software development system for interactive 3D graphic applications. In: Proceedings computer animation, 1995, pp. 114–125, 213

  41. Basdogan, C., Sedef, M., Harders, M., Wesarg, S., VR-based simulators for training in minimally invasive surgery. IEEE Comput. Graph. Appl. 27(2):54–66, 2007.

    Article  PubMed  Google Scholar 

  42. Wang, D., Zhang, Y., Hou, J., Wang, Y., Lv, P., Chen, Y., Zhao, H., iDental: A haptic-based dental simulator and its preliminary user evaluation. IEEE Trans. Haptic 5(4):332–343, 2012.

    Article  Google Scholar 

  43. SensAble, Ghost SDK, [accessed April-10-2015]. http://www.dentsable.com/support-ghost-sdk.htm

  44. Rodwin, M.A., Chang, H.J., Ozaeta, M.M., Omar, R., Malpractice premiums in massachusetts, a high-risk state: 1975 to 2005. Health Aff. 27(3):835–844, 2008.

    Article  Google Scholar 

  45. Stone, S., and Bernstein, M., Prospective error recording in surgery: an analysis of 1108 elective neurosurgical cases. Neurosurgery 60(6):1075–1080, 2007.

    Article  PubMed  Google Scholar 

  46. Delorme, S., Laroche, D., DiRaddo, R., Del Maestro, R.F., NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32–42, 2012.

    PubMed  Google Scholar 

  47. Jiang, D., Hovdebo, J., Cabral, A., Mora, V., Delorme, S., Endoscopic third ventriculostomy on a microneurosurgery simulator. SIMULATION: Transactions of The Society for Modeling and Simulation International 89(12):1442–1449, 2013.

    Article  Google Scholar 

  48. Neubauer, A., Wolfsberger, S., Forster, M. -T., Mroz, L., Wegenkittl, R., Buhler, K., Advanced virtual endoscopic pituitary surgery. IEEE Trans. Vis. Comput. Graph. 11(5):497–507, 2005.

    Article  PubMed  Google Scholar 

  49. Perez-Gutierrez, B., Martinez, D.M., Rojas, O.E., Endoscopic endonasal haptic surgery simulator prototype: A rigid endoscope model, 2010 IEEE Virtual Reality Conference (VR), 2010

  50. Bioingenium Research Group, Nukak3D, [accessed Oct-15-2014]. http://nukak3d.sourceforge.net/index.php

  51. Punak, S., Kurenov, S., Cance, W.: Virtual interrupted suturing exercise with the Endo stitch suturing device. In: Advances in visual computing, Springer Berlin Heidelberg, 2011, pp. 55–63

  52. Spillmann, J., and Teschner, M.: CoRdE: Cosserat Rod elements for the dynamic simulation of one-dimensional elastic objects. In: Eurographics/ACM SIGGRAPH symposium on computer animation, 2007, pp. 1–10

  53. Park, C.H., Wilson, K.L., Howard, A.M.: Examining the learning effects of a low-cost haptic-based virtual reality simulator on laparoscopic cholecystectomy. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, 2013, pp. 233–238

  54. Gaudina, M., Zappi, V., Bellanti, E., Vercelli, G.: eLaparo4D: A step towards a physical training space for virtual video laparoscopic surgery. In: IEEE seventh international conference on complex, intelligent, and software intensive systems, 2013, pp. 611–616

  55. Unity Technologies, Unity - Game engine, tools, and multiplatform, [accessed Jan-18-2015]. https://unity3d.com/es/unity

  56. Blender Foundation, Blender, [accessed Oct-15-2014]. http://www.blender.org/

  57. De Paolis, L.T.: Serious game for laparoscopic suturing training. In: IEEE sixth international conference on complex, intelligent, and software intensive systems (CISIS), 2012, pp. 481–485

  58. Torus Knot Software Ltd, Ogre3D, [accessed Oct-15–2014]. http://www.ogre3d.org/

  59. Halic, T., and De, S.: Lightweight bleeding and smoke effect for surgical simulators. In: IEEE virtual reality conference (VR), 2010, pp. 271–272

  60. De, S., Ahn, W., Lee, D.Y., Jones, D.B.: Novel virtual lap-band simulator could promote patient safety. In: Medicine meets virtual reality 16, 2008, pp. 98–100

  61. Hernansanz, A., Zerbato, D., Gasperotti, L., Scandola, M., Fiorini, P., Casals, A.: Improving the development of surgical skills with virtual fixtures in simulation. In: Information processing in computer-assisted interventions, Springer Berlin Heidelberg, 2012, pp. 157–166

  62. Rasmussen, J., and Member, S., Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other Distinctions in Human Performance Models. IEEE Trans. Syst. Man Cybern. 13(3):257–266, 1983.

    Article  Google Scholar 

  63. Zerbato, D., Baschirotto, D., Baschirotto, D., Botturi, D., Fiorini, P., GPU-based physical cut in interactive haptic simulations. Int. J. Comput. Assist. Radiol. Surg. 6(2):265–72, 2011.

    Article  PubMed  Google Scholar 

  64. Chen, Y., and He, X.: Haptic simulation of bone drilling based on hybrid 3d part representation. In: 2013 IEEE international conference on computational intelligence and virtual environments for measurement systems and applications (CIVEMSA), 2013, pp. 78-81

  65. Cecil, J., Ramanathan, P., Rahneshin, V., Prakash, A., Pirela-Cruz, M.: Collaborative virtual environments for orthopedic surgery. In: IEEE international conference on automation science and engineering (CASE), 2013, pp. 133-137

  66. Ni, D., Chan, W. -Y., Qin, J., Chui, Y. -P., Qu, I., Ho, S., Heng, P. -A., A virtual reality simulator for ultrasound-guided biopsy training. IEEE Comput. Graph. Appl. 31(2):36–48, 2011.

    Article  Google Scholar 

  67. Selmi, S.-Y., Fiard, G., Promayon, E., Vadcard, L., Troccaz, J.: A virtual reality simulator combining a learning environment and clinical case database for image-guided prostate biopsy. In: IEEE 26th international symposium on computer-based medical systems (CBMS), 2013, pp. 179-184

  68. TIMC-IMAG laboratory, Computer Assisted Medical Intervention Tool Kit, [accessed Jan-01-2016]. http://camitk.imag.fr/

  69. Yi, N., Xiao-jun, G., Xiao-ru, L., Xiang-feng, X., Wanjun, M.: The implementation of haptic interaction in virtual surgery. In: International conference on electrical and control engineering (ICECE), 2010, pp. 2351-2354

  70. Wei, L., Najdovski, Z., Abdelrahman, W., Nahavandi, S., Weisinger, H.: Augmented optometry training simulator with multi-point haptics. In: IEEE international conference on systems, man, and cybernetics (SMC), 2012, pp. 2991-2997

  71. Gamecho, B., Silva, H., Guerreiro, J., Gardeazabal, L., Abascal, J., A context-aware application to increase elderly users compliance with physical rehabilitation exercises at home via animatronic biofeedback. J. Med. Syst. 39(11):1–11 , 2015.

    Article  Google Scholar 

  72. Rajanna, V., Vo, P., Barth, J., Mjelde, M., Grey, T., Oduola, C., Hammond, T., Kinohaptics: An automated, wearable, haptic assisted, physio-therapeutic system for post-surgery rehabilitation and self-care. J. Med. Syst. 40(3):1–12, 2015.

    Google Scholar 

  73. Heng, P.-A., Cheng, C.-Y., Wong, T.-T., Xu, Y., Chui, Y.-P., Chan, K.-M., Tso, S.-K., A virtual-reality training system for knee arthroscopic surgery. IEEE Trans. Inf. Technol. Biomed. 8(2):217–227, 2004.

    Article  PubMed  Google Scholar 

  74. Hirche, S., and Buss, M., Human-oriented control for haptic teleoperation. Proc. IEEE 100(3):623–647, 2012.

    Article  Google Scholar 

  75. NVIDIA, PhysX FAQ - NVIDIA, [accessed April-15-2015]. http://www.nvidia.com/object/physxfaq.html

  76. Havok, About Havok, [accessed April-15-2015]. http://www.havok.com/about-havok/

  77. Newton dynamics, Newton Dynamics - About Newton, [accessed April-15-2015]. http://newtondynamics.com/forum/newton.php

  78. Reinkensmeyer, D.J., How to retrain movement after neuro- logic injury: a computational rationale for incorporating robot (or therapist) assistance. IEEE Engineering in Medicine and Biology Society Meeting 2:1479–1482, 2003.

    Google Scholar 

  79. Crespo, L.M., Reinkensmeyer, D.J., Effect of robotic guidance on motor learning of a timing task (2008)

  80. Powell, D., and O’Malley, M.K.: Efficacy of shared-control guidance paradigms for robot-mediated training.. In: IEEE world haptics conference, pp. 427–432 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Escobar-Castillejos.

Additional information

This article is part of the Topical Collection on Education & Training

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Castillejos, D., Noguez, J., Neri, L. et al. A Review of Simulators with Haptic Devices for Medical Training. J Med Syst 40, 104 (2016). https://doi.org/10.1007/s10916-016-0459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0459-8

Keywords

Navigation