Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Design of a Computer-Assisted System to Automatically Detect Cell Types Using ANA IIF Images for the Diagnosis of Autoimmune Diseases

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Indirect immunofluorescence technique applied on HEp-2 cell substrates provides the major screening method to detect ANA patterns in the diagnosis of autoimmune diseases. Currently, the ANA patterns are mostly inspected by experienced physicians to identify abnormal cell patterns. The objective of this study is to design a computer-assisted system to automatically detect cell patterns of IIF images for the diagnosis of autoimmune diseases in the clinical setting. The system simulates the functions of modern flow cytometer and provides the diagnostic reports generated by the system to the technicians and physicians through the radar graphs, box-plots, and tables. The experimental results show that, among the IIF images collected from 17 patients, 6 were classified as coarse-speckled, 3 as diffused, 2 as discrete-speckled, 1 as fine-speckled, 2 as nucleolar, and 3 as peripheral patterns, which were consistent with the patterns determined by the physicians. In addition to recognition of cell patterns, the system also provides the function to automatically generate the report for each patient. The time needed for the whole procedure is less than 30 min, which is more efficient than the manual operation of the physician after inspecting the ANA IIF images. Besides, the system can be easily deployed on many desktop and laptop computers. In conclusion, the designed system, containing functions for automatic detection of ANA cell pattern and generation of diagnostic report, is effective and efficient to assist physicians to diagnose patients with autoimmune diseases. The limitations of the current developed system include (1) only a unique cell pattern was considered for the IIF images collected from a patient, and (2) the cells during the process of mitosis were not adopted for cell classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Perner, P., Perner, H., and Müller, B., Mining Knowledge for Hep-2 Cell Image Classification. Artif Intell Med 26:161–173, 2002.

    Article  PubMed  Google Scholar 

  2. Creemers, C., Guerti, K., Geerts, S., Cotthem, K.V., Ledda, A., Spruyt, V., HEp-2 cell pattern segmentation for the support of autoimmune disease diagnosis. Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, Article 28:1–5, 2011.

  3. Tonti, S., Cataldo, S. D., Bottino, A., and Ficarra, E., An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test. Comput Med Imag Grap 40:62–69, 2015. doi:10.1016/j.compmedimag.2014.12.005.

    Article  Google Scholar 

  4. Huang, Y. L., Chung, C. W., Hsieh, T. Y., and Jao, Y. L., Adaptive automatic segmentation of HEp-2 cells in indirect immunofluorescence images. IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing 2008:418–422, 2008. doi:10.1109/SUTC.2008.73.

    Google Scholar 

  5. Sack, U., Knoechner, S., Warschkau, H., Pigla, U., and Emmerichm, M. K. F., Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics. Autoimmun Rev 2:298–304, 2003.

    Article  CAS  PubMed  Google Scholar 

  6. Soda, P., and Iannellom, G., Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis. IEEE Trans Inf Technol Biomed 13:322–329, 2009.

    Article  PubMed  Google Scholar 

  7. Rigon, A., Buzzulini, F., Soda, P., Onofri, L., Arcarese, L., Iannello, G., and Afeltra, A., Novel opportunities in automated classification of antinuclear antibodies on HEp-2 cells. Autoimmun Rev 10:647–652, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Elbischger, P., Geerts, S., Sander, K., and Ziervogel-Lukas, G., Algorithmic framework for HEP-2 fluorescence pattern classification to aid auto-immune diseases diagnosis. Proc IEEE Int Symp Biomed Imaging 562–565, 2009

  9. Huang, Y. C., Hsieh, T. Y., Chang, C. Y., Cheng, W. T., and Lin, Y. C., Huang YL (2012) HEp-2 cell images classification Bbased on textural and statistic features using self-organizing map. Lecture Notes in Computer Science 7197:529–538, 2012.

    Article  Google Scholar 

  10. Voigt, J., Krause, C., Rohwäder, E., Saschenbrecker, S., Hahn, M., Danckwardt, M., Feirer, C., Ens, K., Fechner, K., Barth, E., Martinetz, T., and Stöcker, W., Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells. Clinical and Developmental Immunology 2012:1–7, 2012. doi:10.1155/2012/651058.

    Article  Google Scholar 

  11. Hiemann, R., Büttner, T., Krieger, T., Roggenbuck, D., Sack, U., and Conrad, K., Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells. Autoimmun Rev 9:17–22, 2009.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, C. C., Hsieh, T. Y., Taur, J. S., and Chen, Y. F., An automatic segmentation and classification framework for anti-nuclear antibody image. Biomed Eng Online 12:S5, 2013. doi:10.1186/1475-925X-12-S1-S5.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Collins, D. L., Holmes, C. J., Peters, T. M., and Evans, A. C., Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3:190–205, 2004. doi:10.1002/hbm.460030304.

    Article  Google Scholar 

  14. Brown, T. T., Kuperman, J. M., Erhart, M., White, N. S., Roddey, J. C., Shankaranarayanan, A., Han, E. T., Rettmann, D., and Dale, A. M., Prospective motion correction of high-resolution magnetic resonance imaging data in children. Neuroimage 53:139–145, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Vapnik, V., The nature of statistical learning theory. Springer, New York, 1995.

    Book  Google Scholar 

  16. Chang, C. C., and Lin, C. J., Training ν-support vector classifiers: theory and algorithms. Neural Comput 13:2119–2147, 2001.

    Article  CAS  PubMed  Google Scholar 

  17. Vincent, L., and Soille, P., Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Trans Pattern Anal Mach Intell 13:583–598, 1991.

    Article  Google Scholar 

  18. Lotufo, R., and Falcao, A., The ordered queue and the optimality of the watershed approaches. Mathematical Morphology and its Applications to Image and Signal Processing 18:341–350, 2000. doi:10.1007/0-306-47025-X_37.

    Article  Google Scholar 

  19. Carpenter, A. E., Jones, T. R., Lamprecht, M. R., Clarke, C., Kang, I. H., Friman, O., Guertin, D. A., Chang, J. H., Lindquist, R. A., Moffat, J., Golland, P., and Sabatini, D. M., Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100, 2006. doi:10.1186/gb-2006-7-10-r100.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Taur, J. S., and Tao, C. W., Texture classification using a fuzzy texture spectrum and neural networks. J. Electron. Imaging 7:29–35, 1998.

    Article  Google Scholar 

  21. Ojala, T., Pietikainen, M., and Maenpaa, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24:971–987, 2002.

    Article  Google Scholar 

  22. Perner, P., Image analysis and classification of HEp-2 cells in fluorescent images. Proceedings of the 14th International Conference on Pattern Recognition 1998 2:1677. 1998. doi: 10.1109/ICPR.1998.712043

  23. Wikipedia (2014) Flow cytometry. Wikipedia. http://en.wikipedia.org/wiki/Flow_cytometry#Flow_cytometers. Accessed 5 March 2014

  24. Chang, C. C., and Lin, C. J., LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(27):1–27, 2011.

    Article  Google Scholar 

  25. Buchner, C., Bryant, C., Eslami, A., and Lakos, G., Anti-Nuclear Antibody Screening Using HEp-2 Cells. J Vis Exp 88:e51211, 2014. doi:10.3791/51211.

    PubMed  Google Scholar 

  26. WIKIBOOKS (2014) An introduction to molecular biology/cell cycle. WIKIBOOKS. https://en.wikibooks.org/wiki/An_Introduction_to_Molecular_Biology/Cell_Cycle. Accessed 5 March 2014

  27. Foggia, P., Percannella, G., Soda, P., Vento, M., Early experiences in mitotic cells recognition on HEp-2 slides. IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS), 38–43. 2010 doi: 10.1109/CBMS.2010.6042611

  28. Iannello, G., Percannella, G., Soda, P., and Vento, M., Mitotic cells recognition in HEp-2 images. Pattern Recogn Lett 45:136–144, 2014. doi:10.1016/j.patrec.2014.03.011.

    Article  Google Scholar 

  29. INOVADX (2014) NOVA View®*. INOVADX. http://www.inovadx.com/store/products/nova-viewr/462?pid=20. Accessed 5 March 2014

Download references

Acknowledgments

This study was supported in part by Ministry of Science and Technology of Taiwan under grant nos. NSC100-2410-H-166-007-MY3 and MOST103-2622-H-166-001.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Fu Chen.

Additional information

This article is part of the Topical Collection on Smart Living in Healthcare and Innovations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CC., Lu, CF., Hsieh, TY. et al. Design of a Computer-Assisted System to Automatically Detect Cell Types Using ANA IIF Images for the Diagnosis of Autoimmune Diseases. J Med Syst 39, 117 (2015). https://doi.org/10.1007/s10916-015-0314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0314-3

Keywords

Navigation