Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Preconditioned Nonsymmetric/Symmetric Discontinuous Galerkin Method for Elliptic Problem with Reconstructed Discontinuous Approximation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose and analyze an efficient preconditioning method for the elliptic problem based on the reconstructed discontinuous approximation method. This method is originally proposed in Li et al. (J Sci Comput 80(1):268–288, 2019) that an arbitrarily high-order approximation space with one unknown per element is reconstructed by solving a local least squares fitting problem. This space can be directly used with the symmetric/nonsymmetric interior penalty discontinuous Galerkin methods. The least squares problem is modified in this paper, which allows us to establish a norm equivalence result between the reconstructed high-order space and the piecewise constant space. This property further inspires us to construct a preconditioner from the piecewise constant space. The preconditioner is shown to be optimal that the upper bound of the condition number to the preconditioned symmetric/nonsymmetric system is independent of the mesh size. In addition, we can enjoy the advantage on the efficiency of the approximation in number of degrees of freedom compared with the standard DG method. Numerical experiments are provided to demonstrate the validity of the theory and the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The author declares that all data supporting the findings of this study are available within this particle.

References

  1. Antonietti, P.F., Ayuso, B.: Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case, M2AN Math. Model. Numer. Anal. 41(1), 21–54 (2007)

    Article  MathSciNet  Google Scholar 

  2. Antonietti, P.F., Giani, S., Houston, P.: Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains. J. Sci. Comput. 60(1), 203–227 (2014)

    Article  MathSciNet  Google Scholar 

  3. Antonietti, P.F., Houston, P.: A class of domain decomposition preconditioners for \(hp\)-discontinuous Galerkin finite element methods. J. Sci. Comput. 46(1), 124–149 (2011)

    Article  MathSciNet  Google Scholar 

  4. Antonietti, P.F., Houston, P., Hu, X., Sarti, M., Verani, M.: Multigrid algorithms for \(hp\)-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes. Calcolo 54(4), 1169–1198 (2017)

    Article  MathSciNet  Google Scholar 

  5. Antonietti, P.F., Melas, L.: Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods. SIAM J. Sci. Comput. 42(2), A1147–A1173 (2020)

    Article  MathSciNet  Google Scholar 

  6. Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.: A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems. J. Sci. Comput. 70(2), 608–630 (2017)

    Article  MathSciNet  Google Scholar 

  7. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  8. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  Google Scholar 

  9. Barker, A.T., Brenner, S.C., Sung, L.-Y.: Overlapping Schwarz domain decomposition preconditioners for the local discontinuous Galerkin method for elliptic problems. J. Numer. Math. 19(3), 165–187 (2011)

    Article  MathSciNet  Google Scholar 

  10. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method for Elliptic Problems, MS &A. Modeling, Simulation and Applications, vol. 11, Springer, Cham (2014)

  11. Brenner, S.C., Cui, J., Gudi, T., Sung, L.-Y.: Multigrid algorithms for symmetric discontinuous Galerkin methods on graded meshes. Numer. Math. 119(1), 21–47 (2011)

    Article  MathSciNet  Google Scholar 

  12. Brix, K., Campos, P.M., Dahmen, W.: A multilevel preconditioner for the interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 46(5), 2742–2768 (2008)

    Article  MathSciNet  Google Scholar 

  13. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: \(hp\)-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. Springer, Cham (2017)

    Book  Google Scholar 

  14. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    Article  MathSciNet  Google Scholar 

  15. Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002)

    Article  MathSciNet  Google Scholar 

  16. Chalmers, N., Warburton, T.: Low-order preconditioning of high-order triangular finite elements. SIAM J. Sci. Comput. 40(6), A4040–A4059 (2018)

    Article  MathSciNet  Google Scholar 

  17. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The Development of Discontinuous Galerkin Methods, Discontinuous Galerkin Methods, Lect. Notes Comput. Sci. Eng., vol. 11. pp. 3–50, Springer, Berlin, 2000, Newport, RI (1999)

  18. Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear Algebra Appl. 13(9), 753–770 (2006)

    Article  MathSciNet  Google Scholar 

  19. Dryja, M., Galvis, J., Sarkis, M.: BDDC methods for discontinuous Galerkin discretization of elliptic problems. J. Complex. 23(4–6), 715–739 (2007)

    Article  MathSciNet  Google Scholar 

  20. Dryja, M., Galvis, J., Sarkis, M.: Balancing Domain Decomposition Methods for Discontinuous Galerkin Discretization, Domain Decomposition Methods in Science and Engineering XVII, Lect. Notes Comput. Sci. Eng., vol. 60, pp. 271–278, Springer, Berlin (2008)

  21. Epshteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206(2), 843–872 (2007)

    Article  MathSciNet  Google Scholar 

  22. Falgout, R.D., Jones, J.E., Yang, U.M.: The Design and Implementation of Hypre, a Library of Parallel High Performance Preconditioners, Numerical solution of partial differential equations on parallel computers, Lect. Notes Comput. Sci. Eng., vol. 51, pp. 267–294, Springer, Berlin (2006)

  23. Feng, X., Karakashian, O.A.: Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39(4), 1343–1365 (2001)

    Article  MathSciNet  Google Scholar 

  24. Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous Galerkin method. Numer. Math. 95(3), 527–550 (2003)

    Article  MathSciNet  Google Scholar 

  25. Hughes, T.J.R., Engel, G., Mazzei, L., Larson, M.G.: A Comparison of Discontinuous and Continuous Galerkin Methods Based on Error Estimates, Conservation, Robustness and Efficiency, Discontinuous Galerkin methods, Lect. Notes Comput. Sci. Eng., vol. 11. pp. 135–146, Springer, Berlin 2000, Newport, RI (1999)

  26. Karakashian, O., Collins, C.: Two-level additive Schwarz methods for discontinuous Galerkin approximations of second-order elliptic problems. IMA J. Numer. Anal. 37(4), 1800–1830 (2017)

    MathSciNet  Google Scholar 

  27. Li, R., Liu, Q., Yang, F.: A reconstructed discontinuous approximation on unfitted meshes to \(H({\rm curl})\) and \(H({\rm div})\) interface problems. Comput. Methods Appl. Mech. Engrg. 403, 115723 (2023)

    Article  MathSciNet  Google Scholar 

  28. Li, R., Ming, P., Sun, Z., Yang, F., Yang, Z.: A discontinuous Galerkin method by patch reconstruction for biharmonic problem. J. Comput. Math. 37(4), 563–580 (2019)

    Article  MathSciNet  Google Scholar 

  29. Li, R., Ming, P., Sun, Z., Yang, Z.: An arbitrary-order discontinuous Galerkin method with one unknown per element. J. Sci. Comput. 80(1), 268–288 (2019)

    Article  MathSciNet  Google Scholar 

  30. Li, R., Ming, P., Tang, F.: An efficient high order heterogeneous multiscale method for elliptic problems. Multiscale Model. Simul. 10(1), 259–283 (2012)

    Article  MathSciNet  Google Scholar 

  31. Li, R., Sun, Z., Yang, F.: Solving eigenvalue problems in a discontinuous approximate space by patch reconstruction. SIAM J. Sci. Comput. 41(5), A3381–A3400 (2019)

    Article  Google Scholar 

  32. Li, R., Yang, F.: A discontinuous Galerkin method by patch reconstruction for elliptic interface problem on unfitted mesh. SIAM J. Sci. Comput. 42(2), A1428–A1457 (2020)

    Article  MathSciNet  Google Scholar 

  33. Li, R., Yang, F.: A least squares method for linear elasticity using a patch reconstructed space. Comput. Methods Appl. Mech. Engrg. 363(1), 112902 (2020)

    Article  MathSciNet  Google Scholar 

  34. Lipnikov, K., Vassilev, D., Yotov, I.: Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math. 126, 1–40 (2013)

    MathSciNet  Google Scholar 

  35. Olson, L., Schroder, J.B.: Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems. J. Comput. Phys. 230(18), 6959–6976 (2011)

    Article  MathSciNet  Google Scholar 

  36. Pazner, W.: Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods. SIAM J. Sci. Comput. 42(5), A3055–A3083 (2020)

    Article  MathSciNet  Google Scholar 

  37. Pazner, W., Kolev, T., Dohrmann, C.R.: Low-order preconditioning for the high-order finite element de Rham complex. SIAM J. Sci. Comput. 45(2), A675–A702 (2023)

    Article  MathSciNet  Google Scholar 

  38. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge-New York (1981)

    Book  Google Scholar 

  39. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations, Frontiers in Applied Mathematics, vol. 35, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008, Theory and implementation

  40. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  41. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  Google Scholar 

  42. Xu, J., Cai, X.-C.: A preconditioned GMRES method for nonsymmetric or indefinite problems. Math. Comp. 59(200), 311–319 (1992)

    Article  MathSciNet  Google Scholar 

  43. Xu, J., Zikatanov, L.: Algebraic multigrid methods. Acta Numer. 26, 591–721 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees sincerely for their constructive comments that improve the quality of this paper. This research was supported by National Natural Science Foundation of China (12201442, 12288101) and Natural Science Foundation of Sichuan (2023NSFSC1323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanyi Yang.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Liu, Q. & Yang, F. Preconditioned Nonsymmetric/Symmetric Discontinuous Galerkin Method for Elliptic Problem with Reconstructed Discontinuous Approximation. J Sci Comput 100, 88 (2024). https://doi.org/10.1007/s10915-024-02639-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02639-6

Keywords

Navigation