Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Decoupled, Positivity-Preserving and Unconditionally Energy Stable Schemes for the Electrohydrodynamic Flow with Variable Density

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the decoupled, positivity-preserving and unconditionally energy stable fully discrete finite element schemes for the electrohydrodynamic flow with variable density. After deriving some new features of the nonlinear coupled terms, by introducing scalar auxiliary variable methods to ensure the positivity and the boundedness of the approximation fluid density, we construct linear and decoupled first- and second-order fully discrete least square finite element methods for the model. Compared with the classical ones, not only the positivity-preserving technique in the proposed methods has the form invariance and is independent of the discrete methodology, but also much better computational cost and accuracy can be achieved. Moreover, by proposing modified zero-energy-contribution methods to balance the errors generated in the decoupled processes for the nonlinear coupled terms, we prove that two fully discrete schemes are unconditionally energy stable. The shown numerical examples confirm the superiority in the computational time, the positivity-preserving, the stability and the computational accuracy of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availibility Statement

Enquiries about data availability should be directed to the authors.

References

  1. Ahmed, A.T., Mu, L.: A new upwind weak Galerkin finite element method for linear hyperbolic equations. J. Comput. Appl. Math. 390, 113376 (2021)

    MathSciNet  Google Scholar 

  2. An, R.: Error analysis of a new fractional-step method for the incompressible Navier–Stokes equations with variable density. J. Sci. Comput. 84, 3 (2020)

    MathSciNet  Google Scholar 

  3. Cai, W., Li, B., Li, Y.: Error analysis of a fully discrete finite element method for variable density incompressible flows in two dimensions. ESAIM Math. Model Numer. Anal. 55, S103–S147 (2021)

    MathSciNet  Google Scholar 

  4. Castellanos, A.: Electrohydrodynamics. Springer, Berlin (1998)

    Google Scholar 

  5. Cheng, Q., Shen, J.: A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving. Comput. Methods Appl. Mech. Engrg. 391, 114585 (2022)

    MathSciNet  Google Scholar 

  6. Chicón, R., Castellanos, A., Martin, E.: Numerical modelling of Coulomb-driven convection in insulating liquids. J. Fluid Mech. 344, 43–66 (1997)

    Google Scholar 

  7. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63, 317–359 (2021)

    MathSciNet  Google Scholar 

  8. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Applied Mathematical Sciences, vol. 159. Springer Science+Business Media, New York (2004)

    Google Scholar 

  9. Erturk, E., Corke, T., Gokcol, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48, 747–774 (2005)

    Google Scholar 

  10. Feng, X., Huang, X., Wang, K.: Error estimate of unconditionally stable and decoupled linear positivity-preserving FEM for the chemotaxis-Stokes equations. SIAM J. Numer. Anal. 59, 3052–3076 (2021)

    MathSciNet  Google Scholar 

  11. Grassi, W., Testi, D., Saputelli, M.: EHD enhanced heat transfer in a vertical annulus. Int. Commun. Heat Mass Tran. 32, 748–757 (2005)

    Google Scholar 

  12. Guermond, J.L., Quartapelle, L.: A projection FEM for variable density incompressible flows. J. Comput. Phys. 165, 167–188 (2000)

    MathSciNet  Google Scholar 

  13. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engrg. 195(44–47), 6011–6045 (2006)

    MathSciNet  Google Scholar 

  14. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible Cahn–Hilliard–Navier–Stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)

    MathSciNet  Google Scholar 

  15. He, Y., Chen, H.: Decoupled and unconditionally energy stable finite element schemes for electrohydrodynamic model with variable density. J. Sci. Comput. 96, 78 (2023)

    MathSciNet  Google Scholar 

  16. He, Y., Chen, H., Chen, H.: Stability and temporal error analysis for SAV schemes for electrohydrodynamic model with variable density. Commun. Nonlinear Sci. 126, 107434 (2023)

    MathSciNet  Google Scholar 

  17. He, Y., Sun, W.: Stability and convergence of the Crank–Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45, 837–869 (2007)

    MathSciNet  Google Scholar 

  18. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    MathSciNet  Google Scholar 

  19. Huang, F., Shen, J.: Bound/positivity preserving and energy stable scalar auxiliary variable schemes for dissipative systems: applications to Keller–Segel and Possion–Nernst–Planck equations. SIAM J. Sci. Comput. 43, A1832–A1857 (2021)

    Google Scholar 

  20. Huang, X., Feng, X., Xiao, X., Wang, K.: Fully decoupled, linear and positivity-preserving scheme for the chemotaxis–Stokes equations. Comput. Methods Appl. Mech. Eng. 383, 113909 (2021)

    MathSciNet  Google Scholar 

  21. Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  22. Kikuchi, H.: Electrohydrodynamics in Dusty and Dirty Plasmas. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  23. Kuzmin, D., Löhner, R., Turek, S.: Flux-Corrected Transport: Principles, Algorithms, and Applications. Springer-Verlag, Berlin (2005)

    Google Scholar 

  24. Li, B., Qiu, W., Yang, Z.: A convergent post-processed discontinuous Galerkin method for incompressible flow with variable density. J. Sci. Comput. 91, 2 (2022)

    MathSciNet  Google Scholar 

  25. Li, F., Wang, B., Wan, Z., Wu, J., Zhang, M.: Absolute and convective instabilities in electrohydrodynamic flow subjected to a Poiseuille flow: a linear analysis. J. Fluid Mech. 862, 816–844 (2019)

    MathSciNet  Google Scholar 

  26. Li, H., Zhang, X.: On the monotonicity and discrete maximum principle of the finite difference implementation of \(C0-Q2\) finite element method. Numer. Math. 145, 437–472 (2020)

    MathSciNet  Google Scholar 

  27. Li, M., Cheng, Y., Shen, J., Zhang, X.: A bound-preserving high order scheme for variable density incompressible Navier–Stokes equations. J. Comput. Phys. 425, 109906 (2021)

    MathSciNet  Google Scholar 

  28. Li, X., Shen, J., Liu, Z.: New SAV-pressure correction methods for the Navier–Stokes equations: stability and error analysis. Math. Comput. 91, 141–167 (2022)

    MathSciNet  Google Scholar 

  29. Li, Y., Mei, L., Ge, J., Shi, F.: A new fractional time-stepping method for variable density incompressible flows. J. Comput. Phys. 242, 124–137 (2013)

    MathSciNet  Google Scholar 

  30. Lin, L., Yang, Z., Dong, S.: Numerical approximation of incompressible Navier–Stokes equations based on an auxiliary energy variable. J. Comput. Phys. 388, 1–22 (2019)

    MathSciNet  Google Scholar 

  31. Lions, P.L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models. Oxford Science Publications, Oxford (1996)

    Google Scholar 

  32. Luo, K., Ṕrez, A.T., Wu, J., Yi, H.-L., Tan, H.-P.: Efficient lattice Boltzmann method for electrohydrodynamic solid-liquid phase change. Phys. Rev. E 100, 013306 (2019)

  33. Mahbub, M., He, X., Nasu, N.J., Qiu, C., Wang, Y., Zheng, H.: A coupled multiphysics model and a decoupled stabilized finite element method for the closed-loop geothermal system. SIAM J. Sci. Comput. 42, B951–B982 (2020)

    MathSciNet  Google Scholar 

  34. Mu, L., Ye, X., Zhang, S.: Development of pressure-robust discontinuous Galerkin finite element methods for the Stokes problem. J. Sci. Comput. 89, 26 (2021)

    MathSciNet  Google Scholar 

  35. Nochetto, R.H., Pyo, J.H.: The Gauge–Uzawa finite element method. Part I: the Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1043–1068 (2005)

    MathSciNet  Google Scholar 

  36. Nochetto, R.H., Salgado, A.J., Tomas, I.: A diffuse interface model for two-phase ferrofluid flows. Comput. Methods Appl. Mech. Eng. 309, 497–531 (2016)

    MathSciNet  Google Scholar 

  37. Pan, M., He, D., Pan, K.: Energy stable finite element method for an electrohydrodynamic model with variable density. J. Comput. Phys. 424, 109870 (2021)

    MathSciNet  Google Scholar 

  38. Pan, M., He, D., Pan, K.: Unconditionally energy stable schemes for an electrohydrodynamic model of charge transport in dielectric liquids. Comput. Methods Appl. Mech. Engrg. 361, 112817 (2020)

    MathSciNet  Google Scholar 

  39. Pyo, J.H., Shen, J.: Gauge–Uzawa methods for incompressible flows with variable density. J. Comput. Phys. 221, 181–197 (2007)

    MathSciNet  Google Scholar 

  40. Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    MathSciNet  Google Scholar 

  41. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  Google Scholar 

  42. Stuetzer, O.M.: Magnetohydrodynamics and electrohydrodynamics. Phys. Fluids 5, 534–544 (1962)

    Google Scholar 

  43. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    Google Scholar 

  44. Traoré, P., Pérez, A.: Two-dimensional numerical analysis of electroconvection in a dielectric liquid subjected to strong unipolar injection. Phys. Fluids 24, 037102 (2012)

    Google Scholar 

  45. Vázquez, P.A., Castellanos, A.: Numerical simulation of EHD flows using discontinuous Galerkin finite element methods. Comput. Fluids 84, 270–278 (2013)

    MathSciNet  Google Scholar 

  46. Vázquez, P.A., Pérez, A.T., Traoré, P., Wu, J.: Electroconvection in a dielectric liquid between two concentric half-cylinders with rigid walls: linear and nonlinear analysis. Phys. Rev. E 97, 023106 (2018)

    Google Scholar 

  47. Wang, K., Wong, Y.: Error correction method for Navier–Stokes equations at high Reynolds numbers. J. Comput. Phys. 255, 245–265 (2013)

    MathSciNet  Google Scholar 

  48. Wu, J., Shen, J., Feng, X.: Unconditionally stable Gauge–Uzawa finite element schemes for incompressible natural convection problems with variable density. J. Comput. Phys. 348, 776–789 (2017)

    MathSciNet  Google Scholar 

  49. Wu, J., Traoré, P., Louste, C., Koulova, D., Romat, H.: Direct numerical simulation of electrohydrodynamic plumes generated by a hyperbolic blade electrode. J. Electrostat. 71, 326–331 (2013)

    Google Scholar 

  50. Wong, P.K., Wang, T.H., Deval, J.H., Ho, M.C.: Electrokinetics in micro devices for biotechnology applications. EEE ASME Trans. Mechatro 9, 366–76 (2004)

    Google Scholar 

  51. Yang, J., Mao, S., He, X., Yang, X., He, Y.: A diffuse interface model and semi-implicit energy stable finite element method for two-phase magnetohydrodynamic flows. Comput. Methods Appl. Mech. Engrg. 356, 435–464 (2019)

    MathSciNet  Google Scholar 

  52. Yang, X.: A novel fully decoupled scheme with second-order time accuracy and unconditional energy stability for the Navier–Stokes equations coupled with mass-conserved Allen–Cahn phase-field model of two-phase incompressible flow. Int. J. Numer. Meth. Eng. 122, 1283–1306 (2021)

    MathSciNet  Google Scholar 

  53. Yang, X.: Fully-discrete, decoupled, second-order time-accurate and energy stable finite element numerical scheme of the Cahn–Hilliard binary surfactant model confined in the Hele-Shaw cell. ESAIM-M2NA 56, 651–678 (2022)

    MathSciNet  Google Scholar 

  54. Yang, X., He, X.: A fully-discrete decoupled finite element method for the conserved Allen–Cahn type phase-field model of three-phase fluid flow system. Comput. Methods Appl. Mech. Eng. 389, 114376 (2022)

    MathSciNet  Google Scholar 

  55. Yang, Z., Dong, S.: An unconditionally energy-stable scheme based on an implicit auxiliary energy variable for incompressible two-phase flows with different densities involving only precomputable coefficient matrices. J. Comput. Phys. 393, 229–257 (2019)

    MathSciNet  Google Scholar 

  56. Zhang, G., He, X., Yang, X.: A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys. 448, 110752 (2022)

    MathSciNet  Google Scholar 

  57. Zhang, G., He, X., Yang, X.: Decoupled, linear, and unconditionally energy stable fully discrete finite element numerical scheme for a two-phase ferrohydrodynamics model. SIAM J. Sci. Comput. 43, B167–B193 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and referees for their many helpful comments and suggestions.

Funding

The corresponding author is partially supported by the Natural Science Foundation of Chongqing (No. CSTB2024NSCQ-MSX0221) and the third author is partially supported by Science and Technology Commission of Shanghai Municipality (Grant Nos. 22JC1400900, 21JC1402500, 22DZ2229014).

Author information

Authors and Affiliations

Authors

Contributions

Enlong Liu: Implementation, Writing, Editing. Kun Wang: Method, Numerical analysis, Writing, Editing. Haibiao Zheng: Implementation.

Corresponding author

Correspondence to Kun Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Liu, E. & Zheng, H. Decoupled, Positivity-Preserving and Unconditionally Energy Stable Schemes for the Electrohydrodynamic Flow with Variable Density. J Sci Comput 101, 52 (2024). https://doi.org/10.1007/s10915-024-02695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02695-y

Keywords

Mathematics Subject Classification

Navigation