Abstract
Attribute to its powerful representation ability, block term decomposition (BTD) has recently attracted many views of multi-dimensional data processing, e.g., hyperspectral image unmixing and blind source separation. However, the popular alternating least squares algorithm for rank-(L, M, N) BTD (BTD-ALS) suffers expensive time and space costs from Kronecker products and solving low-rank approximation subproblems, hindering the deployment of BTD for real applications, especially for large-scale data. In this paper, we propose a fast sketching-based Kronecker product-free algorithm for rank-(L, M, N) BTD (termed as KPF-BTD), which is suitable for real-world multi-dimensional data. Specifically, we first decompose the original optimization problem into several rank-(L, M, N) approximation subproblems, and then we design the bilateral sketching to obtain the approximate solutions of these subproblems instead of the exact solutions, which allows us to avoid Kronecker products and rapidly solve rank-(L, M, N) approximation subproblems. As compared with BTD-ALS, the time and space complexities \(\mathcal {O}{(2(p+1)(I^3LR+I^2L^2R+IL^3R)+I^3LR)}\) and \(\mathcal {O}{(I^3)}\) of KPF-BTD are significantly cheaper than \(\mathcal {O}{(I^3L^6R^2+I^3L^3R+I^3LR+I^2L^3R^2+I^2L^2R)}\) and \(\mathcal {O}{(I^3L^3R)}\) of BTD-ALS, where \(p \ll I\). Moreover, we establish the theoretical error bound for KPF-BTD. Extensive synthetic and real experiments show KPF-BTD achieves substantial speedup and memory saving while maintaining accuracy (e.g., for a \(150\times 150\times 150\) synthetic tensor, the running time 0.2 seconds per iteration of KPF-BTD is significantly faster than 96.2 seconds per iteration of BTD-ALS while their accuracies are comparable).
Similar content being viewed by others
Data Availibility Statement
The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.
References
Ma, L., Xu, L., Zeng, T.: Low rank prior and total variation regularization for image deblurring. J. Sci. Comput. 70, 1336–1357 (2017)
Ding, M., Huang, T.-Z., Ji, T.-Y., Zhao, X.-L., Yang, J.-H.: Low-rank tensor completion using matrix factorization based on tensor train rank and total variation. J. Sci. Comput. 81(2), 941–964 (2019)
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)
Qiu, D., Bai, M., Ng, M.K., Zhang, X.: Robust low transformed multi-rank tensor methods for image alignment. J. Sci. Comput. 87, 24 (2021)
Zeng, C.: Rank properties and computational methods for orthogonal tensor decompositions. J. Sci. Comput. 94, 6 (2022)
Renard, N., Bourennane, S., Blanc-Talon, J.: Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 5(2), 138–142 (2008)
Karami, A., Yazdi, M., Asli, A.Z.: Noise reduction of hyperspectral images using kernel non-negative tucker decomposition. IEEE J. Sel. Topics Signal Process. 46(7), 487–493 (2011)
Goulart, J.H.M., de Oliveira, P.M.R., Farias, R.C., Zarzoso, V., Comon, P.: Alternating group lasso for block-term tensor decomposition and application to ECG source separation. IEEE Trans Signal Process. 68, 2682–2696 (2020)
Zhang, G., Fu, X., Wang, J., Zhao, X.-L., Hong, M.: Spectrum cartography via coupled block-term tensor decomposition. IEEE Trans. Signal Process. 68, 3660–3675 (2020)
Luo, Y.-S., Zhao, X.-L., Li, Z., Ng, M.K., Meng, D.: Low-rank tensor function representation for multi-dimensional data recovery. IEEE Trans. Pattern Anal. Mach. Intell. 46(5), 3351–3369 (2024)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
Lathauwer, L.D.: Decompositions of a higher-order tensor in block terms\(-\)Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30(3), 1033–1066 (2008)
Kilmer, M.E., Horesh, L., Avron, H., Newman, E.: Tensor-tensor algebra for optimal representation and compression of multiway data. Proc. Natl. Acad. Sci. U.S.A. 118, e2015851118 (2021)
Liu, X., Bourennane, S., Fossati, C.: Denoising of hyperspectral images using the parafac model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 50(10), 3717–3724 (2012)
Quan, Y., Ji, H., Shen, Z.: Data-driven multi-scale non-local wavelet frame construction and image recovery. J. Sci. Comput. 63, 307–329 (2015)
Liu, J., Przemyslaw, M., Peter, W., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)
Cichocki, A., Lee, N., Oseledets, I., Phan, A.Z.Q.: Mandic DP Tensor networks for dimensionality reduction and large-scale optimization: part 1 low-rank tensor decompositions. Found. Trends Mach. Learn. 9, 249–429 (2016)
Cichocki, A., Phan, A.H., Zhao, Q., Lee, N., Oseledets, I., Sugiyama, M., Sugiyama, D.P.: Tensor networks for dimensionality reduction and large-scale optimization: part 2 applications and future perspectives. Found. Trends Mach. Learn. 9, 431–673 (2019)
Bengua, J.A., Phien, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)
Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algeb. Appl. 435(3), 641–658 (2011)
Li, M., Li, W., Chen, Y., Xiao, M.: The nonconvex tensor robust principal component analysis approximation model via the weighted \(\ell _p\) -norm regularization. J. Sci. Comput. 89, 68 (2021)
Kernfeld, E., Kilmer, M., Aeron, S.: Tensor-tensor products with invertible linear transforms. Linear Algebr. Appl. 485, 545–570 (2015)
Lu, C., Peng, X., Wei, Y.: Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms. In: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. pp. 5989–5997 (2019)
Jiang, T.-X., Ng, M.K., Zhao, X.-L., Huang, T.-Z.: Framelet representation of tensor nuclear norm for third-order tensor completion. IEEE Trans. Image Process. 29, 7233–7244 (2020)
Song, G.-J., Ng, M.K., Zhang, X.-J.: Robust tensor completion using transformed tensor singular value decomposition. Numer. Linear Algebr. Appl. 27, e2299 (2020)
Kong, H., Lu, C., Lin, Z.: Tensor Q-rank: New data dependent tensor rank. Mach. Learn. pp. 1–34, (2021)
Lin, J., Huang, T.Z., Zhao, X.L., Ji, T.Y., Zhao, Q.: Tensor robust kernel pca for multidimensional data. IEEE Trans. Neural Netw. Learn. Syst. (2024). https://doi.org/10.1109/TNNLS.2024.3356228
Cai, Y., Li, P.: A blind block term decomposition of high order tensors. Proc. AAAI Conf. Artif. Intell. 35(8), 6868–6876 (2021)
Lathauwer, L.D., Nion, D.: Decompositions of a higher-order tensor in block terms-part iii: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30(3), 1067–1083 (2008)
Che, M., Wei, Y., Yan, H.: Randomized algorithms for the low multilinear rank approximations of tensors. J. Comput. Appl. Math. 390, 113380 (2021)
Fu, X., Ibrahim, S., Wai, H.-T., Gao, C., Huang, K.: Block-randomized stochastic proximal gradient for low-rank tensor factorization. IEEE Trans. Signal Process. 68, 2170–2185 (2020)
Duan, X.-F., Duan, S.-Q., Li, J., Li, J., Wang, Q.-W.: Block-randomized stochastic proximal gradient for low-rank tensor factorization. Numer. Linear Algebr. Appl. 28, e2385 (2021)
Che, M., Wei, Y., Yan, H.: An efficient randomized algorithm for computing the approximate tucker decomposition. J. Sci. Comput. 88, 32 (2021)
Dong, W., Yu, G., Qi, L., Cai, X.: Practical sketching algorithms for low-rank tucker approximation of large tensors. J. Sci. Comput. 95, 52 (2023)
Battaglino, C., Ballard, G., Kolda, T.G.: A practical randomized CP tensor decomposition. SIAM J. Matrix Anal. Appl. 39, 876–901 (2018)
Aggour, K.S., Gittens, A., Yener, B.: Adaptive sketching for fast and convergent canonical polyadic decomposition. In: Proc. Int. Conf. Mach. Learn. p. 119 (2020)
Becker, S., Malik, O.A.: Low-rank tucker decomposition of large tensors using TensorSketch. Proc. Int. Conf. Neural Inf. Process. Syst. 10, 117–127 (2018)
Malik, O.A., Becker, S.: A sampling-based method for tensor ring decomposition. Proc. Int. Conf. Mach. Learn. 139, 7400–7411 (2021)
Battaglino, C., Ballard, G., Kolda, T.G.: A randomized algorithm for a tensor-based generalization of the singular value decomposition. Linear Algebr. Appl. 420, 553–571 (2007)
Che, M., Wei, Y.: Randomized algorithms for the approximations of tucker and the tensor train decompositions. Adv. Comput. Math. 45(1), 395–428 (2019)
Zhang, J., Saibaba, A.K., Kilmer, M.E., Aeron, S.: A randomized tensor singular value decomposition based on the t-product. Numer. Linear Algebr. Appl. 25, e2179 (2018)
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)
Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-order singular value decomposition. SIAM J. Sci. Comput. 32(2), A1027–A1052 (2012)
Fazel, M., Candes, E., Recht, B., Parrilo, P.: Compressed sensing and robust recovery of low rank matrices. IN: Proc. Asilomar Conf. Signals Syst. Comput. pp. 1043–1047 (2009)
Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)
Zhou, T., Tao, D.: Bilateral random projections. In: Proc. IEEE Int. Symp. Inf. Theory (ISIT), pp. 1286–1290 (2012)
Hackbusch, W.: Tensor spaces and numerical tensor calculus. Springer Sci. Bus. Media, vol. 42, (2012)
Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: Proc. Int. Conf. Pattern Recognit. (ICPR), pp. 23–26 (2010)
Funding
This research is supported by NSFC (No. 12171072, 12371456, 62131005), Sichuan Science and Technology Program (No. 2024NSFSC0038, 2024NSFJQ0038, 2023ZYD0007), National Key Research and Development Program of China (No. 2020YFA0714001).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, H., Huang, TZ., Zhao, XL. et al. A Fast Algorithm for Rank-(L, M, N) Block Term Decomposition of Multi-Dimensional Data. J Sci Comput 101, 16 (2024). https://doi.org/10.1007/s10915-024-02653-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-024-02653-8