Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generalized Boundary Integral Equation Method for Boundary Value Problems of Two-D Isotropic Lattice Laplacian

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A generalized boundary integral equation method for boundary value problems of two-dimensional isotropic lattice Laplacian is proposed in this paper. The proposed method is an extension of the classical boundary integral equation method with notable advantage. By utilizing the asymptotic expression of the fundamental solution at infinity, this method effectively addresses the challenge of numerical integration involving singular integral kernels. The introduction of Green’s formulas, Dirichlet and Neumann traces, and other tools which are parallel to the traditional integral equation method, form a solid foundation for the development of the generalized boundary integral equation method. The solvability of boundary integral equations and the solvability of lattice interface problem are important guarantees for the feasibility of this method, and these are emphasized in this paper. Subsequently, the generalized boundary integral equation method is applied to boundary value problems equipped with either Dirichlet or Neumann boundary conditions. Simple numerical examples demonstrate the accuracy and effectiveness of the generalized boundary integral equation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Antoine, X., Lorin, E., Tang, Q.: A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations. Mol. Phys. 115(15–16), 1861–1879 (2017). https://doi.org/10.1080/00268976.2017.1290834

    Article  Google Scholar 

  2. Bamberger, A., Duong, T.H., Nedelec, J.C.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique (i). Math. Methods Appl. Sci. 8(1), 405–435 (1986). https://doi.org/10.1002/mma.1670080127

    Article  MathSciNet  Google Scholar 

  3. Bettess, P.: Infinite elements. Int. J. Numer. Meth. Eng. 11(1), 54–64 (1978). https://doi.org/10.1002/nme.1620110107

    Article  Google Scholar 

  4. Brezzi, F., Johnson, C.: On the coupling of boundary integral and finite element methods. Calcolo 16, 189–201 (1979). https://doi.org/10.1007/BF02575926

    Article  MathSciNet  Google Scholar 

  5. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41(3), 799–826 (2003). https://doi.org/10.1137/S0036142902400901

    Article  MathSciNet  Google Scholar 

  6. Chew, W., Liu, Q.: Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comput. Acoust. 04, 341–359 (1996). https://doi.org/10.1142/S0218396X96000118

    Article  Google Scholar 

  7. Druskin, V., Güttel, S., Knizhnerman, L.A.: Near-optimal perfectly matched layers for indefinite Helmholtz problems. SIAM Rev. 58(1), 90–116 (2016). https://doi.org/10.1137/140966927

    Article  MathSciNet  Google Scholar 

  8. Duffin, R.J., Shaffer, D.H.: Asymptotic expansion of double Fourier transforms. Duke Math. J. 27, 581–596 (1960). https://doi.org/10.1215/S0012-7094-60-02756-3

    Article  MathSciNet  Google Scholar 

  9. Givoli, D.: High-order local non-reflecting boundary conditions: a review. Wave Motion 39(4), 319–326 (2004). https://doi.org/10.1016/j.wavemoti.2003.12.004

    Article  MathSciNet  Google Scholar 

  10. Hagstrom, T.: Open boundary conditions for a parabolic system. Math. Comput. Model. 20(10), 55–68 (1994). https://doi.org/10.1016/0895-7177(94)90170-8

    Article  MathSciNet  Google Scholar 

  11. Han, H.: A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8(3), 223–232 (1990)

    MathSciNet  Google Scholar 

  12. Han, H., Wu, X.: Artificial Boundary Method. Tsinghua University Press and Springer Verlag (2013). https://doi.org/10.1007/978-3-642-35464-9

  13. Hua, B., Jost, J., Li-Jost, X.: Polynomial growth harmonic functions on finitely generated abelian groups. Ann. Glob. Anal. Geom. 44, 417–432 (2013). https://doi.org/10.1007/s10455-013-9374-0

    Article  MathSciNet  Google Scholar 

  14. Li, X.: An atomistic-based boundary element method for the reduction of molecular statics models. Comput. Methods Appl. Mech. Eng. 225–228, 1–13 (2012). https://doi.org/10.1016/j.cma.2012.03.006

    Article  MathSciNet  Google Scholar 

  15. Lubich, C.: Convolution quadrature and discretized operational calculus. i. Numer. Math. 52, 129–145 (1988). https://doi.org/10.1007/BF01398686

    Article  MathSciNet  Google Scholar 

  16. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)

    Google Scholar 

  17. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011). https://doi.org/10.1007/978-3-540-71041-7

    Book  Google Scholar 

  18. Tsynkov, S.: Numerical solution of problems on unbounded domains. a review. Appl. Numer. Math. 27(4), 465–532 (1998). https://doi.org/10.1016/S0168-9274(98)00025-7

    Article  MathSciNet  Google Scholar 

  19. Yin, J., Zheng, C.: Space reduction for linear systems with local symmetry. J. Sci. Comput. (2021). https://doi.org/10.1007/s10915-021-01663-0

    Article  MathSciNet  Google Scholar 

  20. Ying, L.: Infinite element method for calculating stress intensity factors. Sci. Sin. (in Chinese) 35(6), 517–535 (1977). https://doi.org/10.1360/za1977-7-6-517

    Article  Google Scholar 

  21. Ying, L., Han, H.: Infinite element method for unbounded regions and inhomogeneous problems. Acta Math. Sin. Chin. Ser. 118–127 (1980)

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China 12171274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Derivation of Asymptotic Expression of the Fundamental Solution

Appendix A. Derivation of Asymptotic Expression of the Fundamental Solution

In the appendix, we give the derivation of the asymptotic expression for the fundamental solution at infinity.

Given generating vectors \(\xi =(\xi _1, \xi _2)\) and \(\eta =(\eta _1, \eta _2)\), we know that the fundamental solution is defined as

$$\begin{aligned} G(t)=\frac{1}{|2\pi T|}\int _{2\pi T}\frac{[\exp (it\cdot k)-1]dk}{2\sum _{s\in \varPi }\sin ^2\left( \frac{s\cdot k}{2}\right) \gamma (s)},\ \forall \, t \in \varPi . \end{aligned}$$

Writing t and k in component form \(t = (a,b)^{T}\), \(k = (x,y)^{T}\), and using the variable substitutions

$$\begin{aligned} X=\xi _1 x+\xi _2 y, \quad Y=\eta _1 x+\eta _2 y, \end{aligned}$$

i.e.,

$$\begin{aligned} x=\alpha _1 X+\beta _1 Y, \quad y=\alpha _2 X+\beta _2 Y, \end{aligned}$$

where

$$\begin{aligned} \alpha _1=\frac{\eta _2}{\eta _2 \xi _1-\eta _1 \xi _2}, \alpha _2=\frac{-\eta _1}{\eta _2 \xi _1-\eta _1 \xi _2}, \beta _1=\frac{-\xi _2}{\eta _2 \xi _1-\eta _1 \xi _2}, \beta _2=\frac{\xi _1}{\eta _2 \xi _1-\eta _1 \xi _2}, \end{aligned}$$

we know

$$\begin{aligned} 2\pi G(a,b)= T_1(F), \end{aligned}$$

where \(T_1\) is defined in article [8], and

$$\begin{aligned} F(X,Y)=\frac{1}{2\sum _{s\in \varPi }\sin ^2\left( \frac{s\cdot k}{2}\right) \gamma (s)}\sim \frac{1}{\lambda _\gamma (x^2+y^2)} \quad \textrm{as} \quad (x,y) \rightarrow (0,0). \end{aligned}$$

In the above equation,

$$\begin{aligned} \lambda _\gamma (x^2+y^2)&=\lambda _\gamma ((\alpha _1 X+\beta _1 Y)^2+(\alpha _2 X+\beta _2 Y)^2) \\&=\lambda _\gamma ((\alpha _1^2+\beta _1^2)X^2+(\alpha _2^2+\beta _2^2)Y^2+2(\alpha _1 \beta _1+\alpha _2 \beta _2)XY). \end{aligned}$$

Let

$$\begin{aligned}{} & {} g=\left( \begin{array}{cc} \lambda _\gamma (\alpha _1^2+\beta _1^2) &{} \lambda _\gamma (\alpha _1 \beta _1+\alpha _2 \beta _2)\\ \lambda _\gamma (\alpha _1 \beta _1+\alpha _2 \beta _2) &{} \lambda _\gamma (\alpha _2^2+\beta _2^2) \end{array}\right) ,\\{} & {} ({\tilde{X}},{\tilde{Y}})^{T}=g^{\frac{1}{2}}(X,Y)^{T}, \end{aligned}$$

then we know

$$\begin{aligned} 2\pi G(a,b)=\textrm{det}g^{-\frac{1}{2}}T_1(F\circ g^{-\frac{1}{2}})({\tilde{a}},{\tilde{b}}), \end{aligned}$$

where

$$\begin{aligned} ({\tilde{a}},{\tilde{b}})^{T}= g^{-\frac{1}{2}} (a,b)^{T}. \end{aligned}$$

Following Corollary 2 in [8], we have

$$\begin{aligned} T_1(F\circ g^{-\frac{1}{2}})=-\textrm{log}{\tilde{t}}+\textrm{log}2-\varUpsilon +T(F_1)\\ -\underset{\epsilon \rightarrow 0}{\textrm{lim}}\left( \textrm{log}\epsilon +(2\pi )^{-1} \int _{\epsilon }^{\infty }rdr\int _{0}^{2\pi }F \circ g^{-\frac{1}{2}} d\theta \right) \end{aligned}$$

where \({\tilde{t}}=({\tilde{a}}^2+{\tilde{b}}^2)^{\frac{1}{2}}\), \(F_1=F-{\tilde{R}}^{-2}S({\tilde{R}})\), \({\tilde{R}}=({\tilde{X}}^2+{\tilde{Y}}^2)^{\frac{1}{2}}\). S is a mollifier mentioned in [8].

The limit in the above equation is a definite value that can be calculated, so it remains to determine \(T(F_1)\). Using Taylor expansion and following Corollary 1, Theorem 2 in [8], we obtain that

$$\begin{aligned} T(F_1)&\sim \frac{1}{{\tilde{t}}^2}\left( { C_1 \left( 6-\frac{24{\tilde{a}}^2}{{\tilde{t}}^2}+\frac{16{\tilde{a}}^4}{{\tilde{t}}^4} \right) + C_2 \left( 6-\frac{24{\tilde{b}}^2}{{\tilde{t}}^2}+\frac{16{\tilde{b}}^4}{{\tilde{t}}^4} \right) } \right. \nonumber \\&\quad \left. +C_3 \left( -2+\frac{16{\tilde{a}}^2{\tilde{b}}^2}{{\tilde{t}}^4}\right) + C_4\left( -\frac{12{\tilde{a}}{\tilde{b}}}{{\tilde{t}}^2}+\frac{16{\tilde{a}}^3{\tilde{b}}}{{\tilde{t}}^4} \right) + C_5 \left( -\frac{12{\tilde{a}}{\tilde{b}}}{{\tilde{t}}^2}+\frac{16{\tilde{b}}^3{\tilde{a}}}{{\tilde{t}}^4} \right) \right) , \end{aligned}$$

where \(C_i, i=1,2,3,4,5\) are constants depend on g. Then we have that

$$\begin{aligned} T(F_1) = O\left( \frac{1}{{\tilde{t}}^2}\right) . \end{aligned}$$

So from all of this, we get (6).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Zheng, C. Generalized Boundary Integral Equation Method for Boundary Value Problems of Two-D Isotropic Lattice Laplacian. J Sci Comput 99, 49 (2024). https://doi.org/10.1007/s10915-024-02507-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02507-3

Keywords

Mathematics Subject Classification

Navigation