Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Multiscale Finite Element Method for an Elliptic Distributed Optimal Control Problem with Rough Coefficients and Control Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We construct and analyze a multiscale finite element method for an elliptic distributed optimal control problem with pointwise control constraints, where the state equation has rough coefficients. We show that the performance of the multiscale finite element method is similar to the performance of standard finite element methods for smooth problems and present corroborating numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Altmann, R., Henning, P., Peterseim, D.: Numerical homogenization beyond scale separation. Acta Numer. 30, 1–86 (2021)

    Article  MathSciNet  Google Scholar 

  3. Au Yeung, T.S., Chung, E.: Multiscale model reduction for a class of optimal control problems with highly oscillatory coeficients. In: Brenner, S.C., Chung, E., Klawonn, A., Kwok, F., Xu, J., Zou, J. (eds.) Lecture Notes in Computational Science and Engineering, vol. 145, pp. 3–15. Springer, Cham (2022)

    Google Scholar 

  4. Babuška, I., Osborn, J.E.: Can a finite element method perform arbitrarily badly? Math. Comput. 69, 443–462 (2000)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S.C., Garay, J.C., Sung, L.-Y.: Additive Schwarz preconditioners for a localized orthogonal decomposition method. Electron. Trans. Numer. Anal. 54, 234–255 (2021)

    Article  MathSciNet  Google Scholar 

  6. Brenner, S.C., Garay, J.C., Sung, L.-Y.: Multiscale finite element methods for an elliptic optimal control problem with rough coefficients. J. Sci. Comput. 91, 76 (2022)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  8. Chen, Y., Huang, Y., Liu, W., Yan, N.: A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients. Comput. Math. Appl. 70, 297–313 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y., Liu, X., Zeng, J., Zhang, L.: Optimal control for multiscale elliptic equations with rough coefficients. J. Comput. Math. 41, 842–866 (2023)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2003)

    Article  MathSciNet  Google Scholar 

  11. Chung, E.T., Efendiev, Y., Leung, W.T.: Constraint energy minimizing generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 339, 298–319 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  13. Dauge, M.: Elliptic boundary value problems on corner domains. In: Lecture Notes in Mathematics, vol. 1341. Springer-Verlag, Berlin-Heidelberg (1988)

    Google Scholar 

  14. E, W., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)

  15. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods. Springer, New York (2009)

    Google Scholar 

  16. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)

    Book  Google Scholar 

  17. Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MathSciNet  Google Scholar 

  18. Ge, L., Yan, N., Wang, L., Liu, W., Yang, D.: Heterogeneous multiscale method for optimal control problem governed by elliptic equations with highly oscillatory coefficients. J. Comput. Math. 36, 644–660 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)

    Book  Google Scholar 

  20. Grisvard, P.: Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985)

    Google Scholar 

  21. Hellman, F., Målqvist, A.: Contrast independent localization of multiscale problems. Multiscale Model. Simul. 15, 1325–1355 (2017)

    Article  MathSciNet  Google Scholar 

  22. Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11, 1149–1175 (2013)

    Article  MathSciNet  Google Scholar 

  23. Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MathSciNet  Google Scholar 

  24. Hou, T.Y., Wu, X.-H., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)

    Article  MathSciNet  Google Scholar 

  25. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  Google Scholar 

  26. Kornhuber, R., Peterseim, D., Yserentant, H.: An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comput. 87, 2765–2774 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971)

    Book  Google Scholar 

  28. Liu, J., Cao, L., Yan, N.: Multiscale asymptotic analysis and computation of optimal control for elliptic systems with constraints. SIAM J. Numer. Anal. 51, 1978–2004 (2013)

    Article  MathSciNet  Google Scholar 

  29. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83, 2583–2603 (2014)

    Article  MathSciNet  Google Scholar 

  30. Målqvist, A., Peterseim, D.: Numerical Homogenization by Localized Orthogonal Decomposition. SIAM, Philadelphia (2021)

    Google Scholar 

  31. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. American Mathematical Society, Providence, RI (2010)

    Book  Google Scholar 

  32. Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM Math. Model. Numer. Anal. 48, 517–552 (2014)

    Article  MathSciNet  Google Scholar 

  33. Peterseim, D., Scheichl, R.: Robust numerical upscaling of elliptic multiscale problems at high contrast. Comput. Methods Appl. Math. 16, 579–603 (2016)

    Article  MathSciNet  Google Scholar 

  34. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  35. Toselli, A., Widlund, O.B.: Domain Decomposition Methods–Algorithms and Theory. Springer, New York (2005)

    Book  Google Scholar 

  36. Tröltzsch, F.: Optimal Control of Partial Differential Equations. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

Download references

Acknowledgements

Portions of this research were conducted with high performance computing resources provided by Louisiana State University (http://www.hpc.lsu.edu).

Funding

This work was supported in part by the National Science Foundation under Grant No. DMS-19-13035 and Grant No. DMS-22-08404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne C. Brenner.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Science Foundation under Grant No. DMS-19-13035 and Grant No. DMS-22-08404.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, S.C., Garay, J.C. & Sung, Ly. A Multiscale Finite Element Method for an Elliptic Distributed Optimal Control Problem with Rough Coefficients and Control Constraints. J Sci Comput 100, 47 (2024). https://doi.org/10.1007/s10915-024-02590-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02590-6

Keywords

Mathematics Subject Classification

Navigation