Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Arbitrary High Order ADER-DG Method with Local DG Predictor for Solutions of Initial Value Problems for Systems of First-Order Ordinary Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An adaptation of the arbitrary high order ADER-DG numerical method with local DG predictor for solving the IVP for a first-order non-linear ODE system is proposed. The proposed numerical method is a completely one-step ODE solver with uniform steps, and is simple in algorithmic and software implementations. It was shown that the proposed version of the ADER-DG numerical method is A-stable and L-stable. The ADER-DG numerical method demonstrates superconvergence with convergence order \({\varvec{2N}}+\textbf{1}\) for the solution at grid nodes, while the local solution obtained using the local DG predictor has convergence order \({\varvec{N}}+\textbf{1}\). It was demonstrated that an important applied feature of this implementation of the numerical method is the possibility of using the local solution as a solution with a subgrid resolution, which makes it possible to obtain a detailed solution even on very coarse coordinate grids. The scale of the error of the local solution, when calculating using standard representations of single or double precision floating point numbers, using large values of the degree N, practically does not differ from the error of the solution at the grid nodes. The capabilities of the ADER-DG method for solving stiff ODE systems characterized by extreme stiffness are demonstrated. Estimates of the computational costs of the ADER-DG numerical method are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2016)

    Google Scholar 

  2. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (1993)

    Google Scholar 

  3. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Google Scholar 

  4. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (2001)

    Google Scholar 

  5. Wahlbin, L.: Superconvergence in Galerkin Finite Element Methods. Springer, Verlag Berlin Heidelberg (1995)

    Google Scholar 

  6. Baccouch, M.: Analysis of optimal superconvergence of the local discontinuous Galerkin method for nonlinear fourth-order boundary value problems. Numer. Algor. 86, 1615–1650 (2021)

    MathSciNet  Google Scholar 

  7. Baccouch, M.: The discontinuous Galerkin method for general nonlinear third-order ordinary differential equations. Appl. Numer. Math. 162, 331–350 (2021)

    MathSciNet  Google Scholar 

  8. Baccouch, M.: Superconvergence of an ultra-weak discontinuous Galerkin method for nonlinear second-order initial-value problems. Int. J. Comput. Methods 20(2), 2250042 (2023)

    MathSciNet  Google Scholar 

  9. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  10. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36, 455–473 (1981)

    MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52, 411–435 (1989)

    MathSciNet  Google Scholar 

  12. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    MathSciNet  Google Scholar 

  13. Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

    Google Scholar 

  14. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    MathSciNet  Google Scholar 

  15. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM M2AN 25, 337–361 (1991)

    Google Scholar 

  16. Baccouch, M.: Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations. Appl. Numer. Math. 106, 129–153 (2016)

    MathSciNet  Google Scholar 

  17. Baccouch, M.: A posteriori error estimates and adaptivity for the discontinuous Galerkin solutions of nonlinear second-order initial-value problems. Appl. Numer. Math. 121, 18–37 (2017)

    MathSciNet  Google Scholar 

  18. Baccouch, M.: Superconvergence of the discontinuous Galerkin method for nonlinear second-order initial-value problems for ordinary differential equations. Appl. Numer. Math. 115, 160–179 (2017)

    MathSciNet  Google Scholar 

  19. Baccouch, M.: A superconvergent ultra-weak local discontinuous Galerkin method for nonlinear fourth-order boundary-value problems. Numer. Algorithms 92(4), 1983–2023 (2023)

    MathSciNet  Google Scholar 

  20. Baccouch, M.: A superconvergent ultra-weak discontinuous Galerkin method for nonlinear second-order two-point boundary-value problems. J. Appl. Math. Comput. 69(2), 1507–1539 (2023)

    MathSciNet  Google Scholar 

  21. Baccouch, M., Johnson, B.: A high-order discontinuous Galerkin method for Ito stochastic ordinary differential equations. J. Comput. Appl. Math. 308, 138–165 (2016)

    MathSciNet  Google Scholar 

  22. Baccouch, M., Temimi, H., Ben-Romdhane, M.: A discontinuous Galerkin method for systems of stochastic differential equations with applications to population biology, finance, and physics. J. Comput. Appl. Math. 388, 113297 (2021)

    MathSciNet  Google Scholar 

  23. Zanotti, O., Fambri, F., Dumbser, M., Hidalgo, A.: Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting. Comput. Fluids 118, 204 (2015)

    MathSciNet  Google Scholar 

  24. Fambri, F., Dumbser, M., Zanotti, O.: Space-time adaptive ADER-DG schemes for dissipative flows: compressible Navier-Stokes and resistive MHD equations. Comput. Phys. Commun. 220, 297 (2017)

    MathSciNet  Google Scholar 

  25. Boscheri, W., Dumbser, M.: Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. J. Comput. Phys. 346, 449 (2017)

    MathSciNet  Google Scholar 

  26. Fambri, F., Dumbser, M., Koppel, S., Rezzolla, L., Zanotti, O.: ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics. MNRAS 477, 4543 (2018)

    Google Scholar 

  27. Dumbser, M., Guercilena, F., Koppel, S., Rezzolla, L., Zanotti, O.: Conformal and covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes. Phys. Rev. D 97, 084053 (2018)

    MathSciNet  Google Scholar 

  28. Dumbser, M., Zanotti, O., Gaburro, E., Peshkov, I.: A well-balanced discontinuous Galerkin method for the first-order Z4 formulation of the Einstein-Euler system. J. Comp. Phys. 504, 112875 (2024)

    MathSciNet  Google Scholar 

  29. Dumbser, M., Loubère, R.: A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes. J. Comput. Phys. 319, 163 (2016)

    MathSciNet  Google Scholar 

  30. Gaburro, E., Dumbser, M.: A posteriori subcell finite volume limiter for general \(P_N P_M\) schemes: applications from gas dynamics to relativistic magnetohydrodynamics. J. Sci. Comput. 86, 37 (2021)

    Google Scholar 

  31. Busto, S., Chiocchetti, S., Dumbser, M., Gaburro, E., Peshkov, I.: High order ADER schemes for continuum mechanics. Front. Phys. 32, 8 (2020)

    Google Scholar 

  32. Dumbser, M., Fambri, F., Tavelli, M., Bader, M., Weinzierl, T.: Efficient implementation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE engine. Axioms 7(3), 63 (2018)

    Google Scholar 

  33. Reinarz, A., Charrier, D.E., Bader, M., Bovard, L., Dumbser, M., Duru, K., Fambri, F., Gabriel, A.-A., Gallard, G.-M., Koppel, S., Krenz, L., Rannabauer, L., Rezzolla, L., Samfass, P., Tavelli, M., Weinzierl, T.: ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems. Comput. Phys. Commun. 254, 107251 (2020)

    MathSciNet  Google Scholar 

  34. Dumbser, M., Zanotti, O.: Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations. J. Comput. Phys. 228, 6991 (2009)

    MathSciNet  Google Scholar 

  35. Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971 (2008)

    MathSciNet  Google Scholar 

  36. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609 (2002)

    MathSciNet  Google Scholar 

  37. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204, 715 (2005)

    MathSciNet  Google Scholar 

  38. Hidalgo, A., Dumbser, M.: ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations. J. Sci. Comput. 48, 173 (2011)

    MathSciNet  Google Scholar 

  39. Dumbser, M.: Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations. Comput. Fluids 39, 60–76 (2010)

    MathSciNet  Google Scholar 

  40. Han Veiga, M., Offner, P., Torlo, D.: DeC and ADER: similarities, differences and a unified framework. J. Sci. Comput. 87, 2 (2021)

    MathSciNet  Google Scholar 

  41. Daniel, J.W., Pereyra, V., Schumaker, L.L.: Iterated deferred corrections for initial value problems. Acta Ci. Venezolana 19, 128–135 (1968)

    MathSciNet  Google Scholar 

  42. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40, 241–266 (2000)

    MathSciNet  Google Scholar 

  43. Abgrall, R., Bacigaluppi, P., Tokareva, S.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1, 471–500 (2003)

    MathSciNet  Google Scholar 

  44. Liu, Y., Shu, C.-W., Zhang, M.: Strong stability preserving property of the deferred correction time discretization. J. Comput. Math. 26, 633–656 (2008)

    MathSciNet  Google Scholar 

  45. Abgrall, R.: High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. J. Sci. Comput. 73, 461–494 (2017)

    MathSciNet  Google Scholar 

  46. Abgrall, R., Bacigaluppi, P., Tokareva, S.: High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics. Comput. Math. Appl. 78, 274–297 (2019)

    MathSciNet  Google Scholar 

  47. Baeza, A., Boscarino, S., Mulet, P., Russo, G., Zorio, D.: Approximate Taylor methods for ODEs. Comput. Fluids 159, 156–166 (2017)

    MathSciNet  Google Scholar 

  48. Jorba, A., Zou, M.: A software package for the numerical integration of ODEs by means of high-order Taylor methods. Exp. Math. 14, 99–117 (2005)

    MathSciNet  Google Scholar 

  49. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO finite volume schemes with space-time adaptive mesh refinement. J. Comput. Phys. 248, 257 (2013)

    MathSciNet  Google Scholar 

  50. Dumbser, M., Hidalgo, A., Zanotti, O.: High order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Engrg. 268, 359 (2014)

    MathSciNet  Google Scholar 

  51. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47 (2014)

    MathSciNet  Google Scholar 

  52. Zanotti, O., Dumbser, M.: A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement. Comput. Phys. Commun. 188, 110 (2015)

    MathSciNet  Google Scholar 

  53. Ketcheson, D., Waheed, U.: A comparison of high-order explicit Runge-Kutta, extrapolation, and deferred correction methods in serial and parallel. Commun. Appl. Math. Comput. Sci. 9, 175–200 (2014)

    MathSciNet  Google Scholar 

  54. Jackson, H.: On the eigenvalues of the ADER-WENO Galerkin predictor. J. Comput. Phys. 333, 409 (2017)

    MathSciNet  Google Scholar 

  55. Popov, I.S.: Space-time adaptive ADER-DG finite element method with LST-DG predictor and a posteriori sub-cell WENO finite-volume limiting for simulation of non-stationary compressible multicomponent reactive flows. J. Sci. Comput. 95, 44 (2023)

    MathSciNet  Google Scholar 

  56. Nechita, M.: Revisiting a flame problem. Remarks on some non-standard finite difference schemes. Didactica Math. 34, 51–56 (2016)

    Google Scholar 

  57. Abelman, S., Patidar, K.C.: Comparison of some recent numerical methods for initial-value problems for stiff ordinary differential equations. Comput. Math. Appl. 55, 733–744 (2008)

    MathSciNet  Google Scholar 

  58. Shampine, L.F., Gladwell, I., Thompson, S.: Solving ODEs with Matlab. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  59. O’Malley, R.E.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991)

    Google Scholar 

  60. Reiss, E.L.: A new asymptotic method for jump phenomena. SIAM J. Appl. Math. 39, 440–455 (1980)

    MathSciNet  Google Scholar 

  61. Owren, B., Zennaro, M.: Derivation of efficient, continuous, explicit Runge-Kutta methods. SIAM J. Sci. Stat. Comput. 13, 1488–1501 (1992)

    MathSciNet  Google Scholar 

  62. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.: Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. J. Comput. Phys. 230, 4232–42471 (2011)

    MathSciNet  Google Scholar 

  63. Bogacki, P., Shampine, L.W.: A 3(2) pair of Runge-Kutta formulas. Appl. Math. Lett. 2, 321–325 (1989)

    MathSciNet  Google Scholar 

  64. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    MathSciNet  Google Scholar 

  65. Shampine, L.W.: Some practical Runge-Kutta formulas. Math. Comput. 46, 135–150 (1986)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The reported study was supported by the Russian Science Foundation grant No. 21-71-00118 https://rscf.ru/en/project/21-71-00118/. The author would like to thank the anonymous reviewers for their encouraging comments and remarks that helped to improve the quality and readability of this paper. The author would like to thank Popova A.P. for help in correcting the English text.

Funding

The reported study was supported by the Russian Science Foundation grant No. 21-71-00118 https://rscf.ru/en/project/21-71-00118/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan S. Popov.

Ethics declarations

Conflict of interest

The author declares that he has no Conflict of interest.

Competing interest

The author declares that he has no Competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, I.S. Arbitrary High Order ADER-DG Method with Local DG Predictor for Solutions of Initial Value Problems for Systems of First-Order Ordinary Differential Equations. J Sci Comput 100, 22 (2024). https://doi.org/10.1007/s10915-024-02578-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02578-2

Keywords

Mathematics Subject Classification

Navigation