Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose second-order numerical methods based on the generalized positive auxiliary variable (gPAV) framework for solving the Cahn–Hilliard–Navier–Stokes–Darcy model in superposed free flow and porous media. In the gPAV-reformulated system, we introduce an auxiliary variable according to the modified energy law and take account into the interface conditions between the two subdomains. By implicit-explicit temporal discretization, we develop fully decoupled linear gPAV-CNLF and gPAV-BDF2 numerical methods effected with the Galerkin finite element method. The fully discrete schemes satisfy a modified energy law irrespective of time step size. Plentiful numerical experiments are performed to validate the methods and demonstrate the robustness. The application in filtration systems, the influence of viscous instability, general permeability, curve interface, and different densities are discussed in details to further illustrate the compatibility and applicability of our developed gPAV numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Armentano, M.G., Stockdale, M.L.: Approximations by mini mixed finite element for the Stokes–Darcy coupled problem on curved domains. Int. J. Numer. Anal. Model. 18, 203–234 (2021)

    MathSciNet  Google Scholar 

  2. Bashir, S., Rees, J.M., Zimmerman, W.B.: Simulations of microfluidic droplet formation using the two-phase level set method. Chem. Eng. Sci. 66(20), 4733–4741 (2011)

    Google Scholar 

  3. Baskaran, A., Lowengrub, J.S., Wang, C., Wise, S.M.: Convergence analysis of a second order convex splitting scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 51(5), 2851–2873 (2013)

    MathSciNet  Google Scholar 

  4. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Google Scholar 

  5. Brereton, G., Korotney, D.: Coaxial and oblique coalescence of two rising bubbles. In: Tryggvason, G., Sahin, I. (eds.) Dynamics of Bubbles and Vortices Near a Free Surface, vol. 119. ASME, New York (1991)

    Google Scholar 

  6. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)

    MathSciNet  Google Scholar 

  7. Chakraborty, I., Biswas, G., Ghoshdastidar, P.S.: A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids. Int. J. Heat Mass Transf. 58(1), 240–259 (2013)

    Google Scholar 

  8. Chen, C.-Y., Huang, Y.-S., Miranda, J.A.: Diffuse-interface approach to rotating Hele-Shaw flows. Phys. Rev. E 84, 046302 (2011)

    Google Scholar 

  9. Chen, J., Sun, S., Wang, X.: A numerical method for a model of two-phase flow in a coupled free flow and porous media system. J. Comput. Phys. 268, 1–16 (2014)

    MathSciNet  Google Scholar 

  10. Chen, W., Han, D., Wang, X.: Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Stokes–Darcy system for two-phase flows in karstic geometry. Numer. Math. 137(1), 229–255 (2017)

    MathSciNet  Google Scholar 

  11. Chen, W., Han, D., Wang, X., Zhang, Y.: Uniquely solvable and energy stable decoupled numerical schemes for the Cahn–Hilliard–Navier–Stokes–Darcy–Boussinesq system. J. Sci. Comput. 85(45), 1–28 (2020)

    MathSciNet  Google Scholar 

  12. Chen, W., Wang, S., Zhang, Y., Han, D., Wang, C., Wang, X.: Error estimate of a decoupled numerical scheme for the Cahn–Hilliard–Stokes–Darcy system. IMA Numer. Anal. 42(3), 2621–2655 (2022)

    MathSciNet  Google Scholar 

  13. Chidyagwai, P., Riviére, B.: Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Resour. 33, 92–105 (2010)

    Google Scholar 

  14. Choi, Y.J., Anderson, P.D.: Cahn–Hilliard modeling of particles suspended in two-phase flows. Int. J. Numer. Meth. Fluids 69(5), 995–1015 (2012)

    MathSciNet  Google Scholar 

  15. Collins, C., Shen, J., Jari, R.: An efficient, energy stable scheme for the Cahn–Hilliard–Brinkman system. Commun. Comput. Phys. 13, 929–957 (2013)

    MathSciNet  Google Scholar 

  16. Cueto-Felgueroso, L., Juanes, R.: A phase-field model of two-phase Hele–Shaw flow. J. Fluid Mech. 758, 522–552 (2014)

    MathSciNet  Google Scholar 

  17. DeCaria, V., Illiescu, T., Layton, W., McLaughlin, M., Schneier, M.: An artificial compression reduced order model. SIAM J. Numer. Anal. 58, 565–589 (2020)

    MathSciNet  Google Scholar 

  18. Dedè, L., Garcke, H., Lam, K.F.: A Hele–Shaw–Cahn–Hilliard model for incompressible two-phase flows with different densities. J. Math. Fluid Mech. 20(2), 531–567 (2018)

    MathSciNet  Google Scholar 

  19. Diegel, A., Feng, X., Wise, S.: Analysis of a mixed finite element method for a Cahn–Hilliard–Darcy–Stokes system. SIAM J. Numer. Anal. 53(1), 127–152 (2015)

    MathSciNet  Google Scholar 

  20. Feng, X.L., Tang, T., Yang, J.: Stabilized Crank–Nicolson/Adams–Bashforth schemes for phase field models. East Asian J. Appl. Math. 3, 59–80 (2013)

    MathSciNet  Google Scholar 

  21. Ferreira, R.B., Falcão, D.S., Oliveira, V.B., Pinto, A.M.F.R.: Numerical simulations of two-phase flow in proton exchange membrane fuel cells using the volume of fluid method–a review. J. Power Sources 277, 329–342 (2015)

    Google Scholar 

  22. Gao, Y., Han, D., He, X.-M., Rüde, U.: Unconditionally stable numerical methods for Cahn–Hilliard–Navier–Stokes–Darcy system with different densities and viscosities. J. Comput. Phys. 454, 110968 (2022)

    MathSciNet  Google Scholar 

  23. Gao, Y., He, X., Lin, T., Lin, Y.: Fully decoupled energy-stable numerical schemes for two-phase coupled porous media and free flow with different densities and viscosities. ESAIM Math. Model. Numer. Anal. 57(3), 1323–1354 (2023)

    MathSciNet  Google Scholar 

  24. Gao, Y., He, X., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for the Cahn–Hilliard–Navier–Stokes–Darcy phase field model. SIAM J. Sci. Comput. 40(1), B110–B137 (2018)

    MathSciNet  Google Scholar 

  25. Gao, Y., Li, R., He, X., Lin, Y.: A fully decoupled numerical method for Cahn–Hilliard–Navier–Stokes–Darcy equations based on auxiliary variable approaches. J. Comput. Appl. Math. 436, 115363 (2024)

    MathSciNet  Google Scholar 

  26. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal 47(3), 2052–2089 (2009)

    MathSciNet  Google Scholar 

  27. Guan, Z., Wang, C., Wise, S.W.: A convergent convex splitting scheme for the periodic nonlocal Cahn–Hilliard equation. Numer. Math. 128, 277–406 (2014)

    MathSciNet  Google Scholar 

  28. Guermond, J.-L., Minev, P.: High-order time stepping for the Navier–Stokes equations with minimal computational complexity. J. Comput. Appl. Math. 310, 92–103 (2017)

    MathSciNet  Google Scholar 

  29. Guermond, J.-L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44), 6011–6045 (2006)

    MathSciNet  Google Scholar 

  30. Han, D., Sun, D., Wang, X.: Two-phase flows in karstic geometry. Math. Methods Appl. Sci. 37(18), 3048–3063 (2014)

    MathSciNet  Google Scholar 

  31. Han, D., Wang, X.: A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn–Hilliard–Darcy system. J. Sci. Comput. 77(2), 1210–1233 (2018)

    MathSciNet  Google Scholar 

  32. Han, D., Wang, X., Wang, Q., Wu, Y.: Existence and weak-strong uniqueness of solutions to the Cahn–Hilliard–Navier–Stokes–Darcy system in superposed free flow and porous media. Nonlinear Anal. 211, 112411 (2021)

    MathSciNet  Google Scholar 

  33. Han, D., Wang, X., Wu, H.: Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry. J. Differ. Equ. 257(10), 3887–3933 (2014)

    MathSciNet  Google Scholar 

  34. Hanspal, N.S., Waghode, A.N., Nassehi, V., Wakeman, R.J.: Numerical analysis of coupled Stokes/Darcy flow in industrial filtrations. Transp. Porous Media 64, 73–101 (2006)

    Google Scholar 

  35. He, X.-M., Jiang, N., Qiu, C.: An artificial compressibility ensemble algorithm for a stochastic Stokes–Darcy model with random hydraulic conductivity and interface conditions. Int. J. Numer. Methods Eng. 121, 1–28 (2019)

    MathSciNet  Google Scholar 

  36. Jiang, N., Li, Y., Yang, H.: An artificial compressibility Crank–Nicolson Leap–Frog method for the Stokes–Darcy model and application in ensemble simulations. SIAM J. Numer. Anal. 59(1), 401–428 (2021)

    MathSciNet  Google Scholar 

  37. Jiang, N., Yang, H.: Stabilized scalar auxiliary variable ensemble algorithms for parameterized flow problems. SIAM J. Sci. Comput. 43, A2869–A2896 (2021)

    MathSciNet  Google Scholar 

  38. Karam, M., Saad, T.: High-order pressure estimates for projection-based Navier–Stokes solvers. J. Comput. Phys. 452, 110925 (2022)

    MathSciNet  Google Scholar 

  39. Kou, J., Wang, X., Du, S., Sun, S.: An energy stable linear numerical method for thermodynamically consistent modeling of two-phase incompressible flow in porous media. J. Comput. Phys. 451, 110854 (2022)

    MathSciNet  Google Scholar 

  40. Labovsky, A., Layton, W.J., Manica, C.C., Neda, M., Rebholz, L.G.: The stabilized extrapolated trapezoidal finite-element method for the Navier–Stokes equations. J. Comput. Phys. 198(9–12), 958–974 (2009)

    MathSciNet  Google Scholar 

  41. Layton, W., Tran, H., Trenchea, C.: Analysis of long time stability and errors of two partitioned methods for uncoupling evolutionary groundwater-surface water flows. SIAM J. Numer. Anal. 51(1), 248–272 (2013)

    MathSciNet  Google Scholar 

  42. Lee, H.G., Lowengrub, J., Goodman, J.: Modeling pinchoff and reconnection in a Hele–Shaw cell. I. The models and their calibration. Phys. Fluids 14(2), 492–513 (2002)

    MathSciNet  Google Scholar 

  43. Lin, L., Liu, X., Dong, S.: A gPAV-based unconditionally energy-stable scheme for incompressible flows with outflow/open boundaries. Comput. Methods Appl. Mech. Eng. 365, 112969 (2020)

    MathSciNet  Google Scholar 

  44. Lin, L., Ni, N., Yang, Z., Dong, S.: An energy-stable scheme for incompressible Navier–Stokes equations with periodically updated coefficient matrix. J. Comput. Phys. 418, 109624 (2020)

    MathSciNet  Google Scholar 

  45. Litster, S., Sinton, D., Djilali, N.: Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers. J. Power Source 154(1), 95–105 (2006)

    Google Scholar 

  46. Liu, C., Ray, D., Thiele, C., Lin, L., Riviere, B.: A pressure-correction and bound-preserving discretization of the phase-field method for variable density two-phase flows. J. Comput. Phys. 449, 110769 (2022)

    MathSciNet  Google Scholar 

  47. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

    MathSciNet  Google Scholar 

  48. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    MathSciNet  Google Scholar 

  49. Pan, Q., Chen, C., Zhang, Y.J., Yang, X.: A novel hybrid IGA-EIEQ numerical method for the Allen–Cahn/Cahn–Hilliard equations on complex curved surfaces. Comput. Methods Appl. Mech. Eng. 404, 115767 (2023)

    MathSciNet  Google Scholar 

  50. Qian, Y., Wang, Z., Wang, F., Dong, S.: gPAV-based unconditionally energy-stable schemes for the Cahn–Hilliard equation: stability and error analysis. Comput. Methods Appl. Mech. Eng. 372, 113444 (2020)

    MathSciNet  Google Scholar 

  51. Qiao, Z., Sun, S., Zhang, T., Zhang, Y.: A new multi-component diffuse interface model with Peng–Robinson equation of state and its scalar auxiliary variable (SAV) approach. Commun. Comput. Phys. 26(5), 1597–1616 (2019)

    MathSciNet  Google Scholar 

  52. Saffmann, P.G., Taylor, G.I.: The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245(1242), 312–329 (1958)

    MathSciNet  Google Scholar 

  53. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    MathSciNet  Google Scholar 

  54. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    MathSciNet  Google Scholar 

  55. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1169–1691 (2010)

    MathSciNet  Google Scholar 

  56. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    MathSciNet  Google Scholar 

  57. Song, P., Wang, C., Yotov, I.: Domain decomposition for Stokes–Darcy flows with curved interfaces. Proc. Comput. Sci. 18, 1077–1086 (2013)

    Google Scholar 

  58. Sun, P.T., Xue, G., Wang, C.Y., Xu, J.C.: A domain decomposition method for twophase transport model in the cathode of a polymer electrolyte fuel cell. J. Comput. Phys. 228, 6016–6036 (2009)

    MathSciNet  Google Scholar 

  59. van Sint Annaland, M., Deen, N.G., Kuipers, J.A.M.: Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem. Eng. Sci. 60(11), 2999–3011 (2005)

    Google Scholar 

  60. Xu, C., Chen, C., Yang, X., He, X.-M.: Numerical approximations for the hydrodynamics coupled binary surfactant phase field model: second order, linear, unconditionally energy stable schemes. Commun. Math. Sci. 17(3), 835–858 (2019)

    MathSciNet  Google Scholar 

  61. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)

    MathSciNet  Google Scholar 

  62. Yang, J., Kim, J.: Energy dissipation-preserving time-dependent auxiliary variable method for the phase-field crystal and the Swift-Hohenberg models. Numer. Algorithms 89(4), 1865–1894 (2022)

    MathSciNet  Google Scholar 

  63. Yang, X.: On a novel fully decoupled, second-order accurate energy stable numerical scheme for a binary fluid-surfactant phase-field model. SIAM J. Sci. Comput. 43(2), B479–B507 (2021)

    MathSciNet  Google Scholar 

  64. Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal equation. J. Comput. Phys. 330, 13–22 (2017)

    Google Scholar 

  65. Yang, X., He, X.: A fully-discrete decoupled finite element method for the conserved Allen–Cahn type phase-field model of three-phase fluid flow system. Comput. Meth. Appl. Mech. Eng. 389, 114376 (2022)

    MathSciNet  Google Scholar 

  66. Yang, Z., Dong, S.: A roadmap for discretely energy-stable schemes for dissipative systems based on a generalized auxiliary variable with guaranteed positivity. J. Comput. Phys. 404, 109121 (2020)

    MathSciNet  Google Scholar 

  67. Zhang, G., He, X.-M., Yang, X.: A fully decoupled linearized finite element method with second-order temporal accuracy and unconditional energy stability for incompressible MHD equations. J. Comput. Phys. 448, 110752 (2022)

    MathSciNet  Google Scholar 

  68. Zhang, H., Yang, X., Zhang, J.: Stabilized invariant energy quadratization (S-IEQ) method for the molecular beam epitaxial model without slope section. Int. J. Numer. Anal. Model. 18, 642–655 (2021)

    MathSciNet  Google Scholar 

  69. Zhu, G., Kou, J., Yao, J., Li, A., Sun, A.: A phase-field moving contact line model with soluble surfactants. J. Comput. Phys. 405, 109170 (2020)

    MathSciNet  Google Scholar 

  70. Zhu, P., Wang, L.: Passive and active droplet generation with microfluidics: a review. Lab Chip 17(1), 34–75 (2017)

    Google Scholar 

Download references

Funding

The first author is partially supported by the NSFC, PR China grant 12371406, Natural Science Foundation of Guangdong Province, PR China 2023A1515010697. The work of the second author was partially supported by the National Science Foundation grants DMS-2310340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daozhi Han.

Ethics declarations

Conflict of interest

The author Yali Gao declares that she has no conflict of interest during this study. The author Daozhi Han affirms that he has no Conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Han, D. Second-Order Decoupled Linear Energy-Law Preserving gPAV Numerical Schemes for Two-Phase Flows in Superposed Free Flow and Porous Media. J Sci Comput 100, 36 (2024). https://doi.org/10.1007/s10915-024-02576-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02576-4

Keywords

Mathematics Subject Classification

Navigation