Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical Solution of the Biot/Elasticity Interface Problem Using Virtual Element Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose, analyse and implement a virtual element discretisation for an interfacial poroelasticity/elasticity consolidation problem. The formulation of the time–dependent poroelasticity equations uses displacement, fluid pressure and total pressure, and the elasticity equations are written in displacement-pressure formulation. The construction of the virtual element scheme does not require Lagrange multipliers to impose the transmission conditions (continuity of displacement and total traction, and no-flux for the fluid) on the interface. We show the stability and convergence of the virtual element method for different polynomial degrees, and the error bounds are robust with respect to delicate model parameters (such as Lamé constants, permeability, and storativity coefficient). Finally we provide some simple numerical examples that illustrate the properties of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  Google Scholar 

  2. Anaya, V., De Wijn, Z., Gómez-Vargas, B., Mora, D., Ruiz-Baier, R.: Rotation-based mixed formulations for an elasticity–poroelasticity interface problem. SIAM J. Sci. Comput. 42(1), B225–B249 (2020)

    Article  MathSciNet  Google Scholar 

  3. Anaya, V., Khan, A., Mora, D., Ruiz-Baier, R.: Robust a posteriori error analysis for rotation-based formulations of the elasticity/poroelasticity coupling. SIAM J. Sci. Comput. 44(4), B964–B995 (2022)

    Article  MathSciNet  Google Scholar 

  4. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  Google Scholar 

  5. Badia, S., Hornkjøl, M., Khan, A., Mardal, K.-A., Martín, A.F., Ruiz-Baier, R.: Efficient and reliable divergence-conforming methods for an elasticity–poroelasticity interface problem. Comput. Math. Appl. 157, 173–194 (2024)

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  Google Scholar 

  8. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    Article  MathSciNet  Google Scholar 

  9. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56(3), 1210–1242 (2018)

    Article  MathSciNet  Google Scholar 

  10. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)

    Article  MathSciNet  Google Scholar 

  11. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, Vol. 44, p. xiv+685 (2013)

  12. Boffi, D., Botti, M., Di Pietro, D.A.: A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38(3), A1508–A1537 (2016)

    Article  MathSciNet  Google Scholar 

  13. Botti, L., Botti, M., Di Pietro, D.A.: A Hybrid High-Order method for multiple-network poroelasticity. In: Polyhedral methods in geosciences, vol. 27. SEMA SIMAI. Springer, Cham, pp. 227–258 (2021)

  14. Boon, W.M., Kuchta, M., Mardal, K.-A., Ruiz-Baier, R.: Robust preconditioners for perturbed saddle-point problems and conservative discretizations of Biot’s equations utilizing total pressure. SIAM J. Sci. Comput. 43(4), B961–B983 (2021)

    Article  MathSciNet  Google Scholar 

  15. Brenner, S.C., Scott, L.R. : The Mathematical Theory of finite Element Methods. Texts in Applied Mathematics, Vol. 15, No. 3. Springer, New York, p. xviii+397 (2008)

  16. Brenner, S.C., Sung, L.Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28(7), 1291–1336 (2018)

    Article  MathSciNet  Google Scholar 

  17. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical solution of initial-value problems in differential-algebraic equations. Classics Appl. Math. 14, x+256 (1996)

  18. Bürger, R., Kumar, S., Mora, D., Ruiz-Baier, R., Verma, N.: Virtual element methods for the three-field formulation of time-dependent linear poroelasticity. Adv. Comput. Math. 47, e2 (2021)

    Article  MathSciNet  Google Scholar 

  19. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137(4), 857–893 (2017)

    Article  MathSciNet  PubMed  Google Scholar 

  20. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37, 1317–1354 (2017)

    MathSciNet  Google Scholar 

  21. Chen, L., Wei, H., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334, 327–348 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219, 9043–9056 (2013)

    MathSciNet  Google Scholar 

  23. Coulet, J., Faille, I., Girault, V., Guy, N., Nataf, F.: A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput. Geosci. 24, 381–403 (2020)

    Article  MathSciNet  Google Scholar 

  24. Droniou, J., Yemm, L.: Robust hybrid high-order method on polytopal meshes with small faces. Comput. Methods Appl. Math. 22(1), 47–71 (2022)

    Article  MathSciNet  Google Scholar 

  25. Fu, G.: A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77(1), 237–252 (2019)

    Article  MathSciNet  Google Scholar 

  26. Girault, V., Pencheva, G., Wheeler, M.F., Wildey, T.: Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math. Models Methods Appl. Sci. 21, 169–213 (2011)

    Article  MathSciNet  Google Scholar 

  27. Girault, V., Lu, X., Wheeler, M.F.: A posteriori error estimates for Biot system using Enriched Galerkin for flow. Comput. Methods Appl. Mech. Engrg. 369, e113185 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25, 587–645 (2015)

    Article  MathSciNet  Google Scholar 

  29. Herrmann, L.R.: Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA J. 3, 1896–1900 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48, 202–226 (2018)

    Article  MathSciNet  Google Scholar 

  31. Hosseinkhan, A., Showalter, R.E.: Biot-pressure system with unilateral displacement constraints. J. Math. Anal. Appl. 497(1), e124882 (2021)

    Article  MathSciNet  Google Scholar 

  32. Kanschat, G., Rivière, B.: A finite element method with strong mass conservation for Biot’s linear consolidation model. J. Sci. Comput. 77(3), 1762–1779 (2018)

    Article  MathSciNet  Google Scholar 

  33. Kumar, S., Oyarzúa, R., Ruiz-Baier, R., Sandilya, R.: Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM: Math. Model. Numer. Anal. 54(1), 273–299 (2020)

    Article  MathSciNet  Google Scholar 

  34. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society, p. viii+377 (2006)

  35. Lee, J.J., Mardal, K.-A., Winther, R.: Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39, A1–A24 (2017)

    Article  MathSciNet  Google Scholar 

  36. Lee, J.J., Piersanti, E., Mardal, K.-A., Rognes, M.: A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41(2), A722–A747 (2019)

    Article  MathSciNet  Google Scholar 

  37. Mardal, K.A., Rognes, M.E., Thompson, T.B.: Accurate discretization of poroelasticity without Darcy stability. Stokes–Biot stability revisited. BIT Numer. Math. 61, 941–976 (2021)

    Article  Google Scholar 

  38. Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54(5), 2951–2973 (2016)

    Article  MathSciNet  Google Scholar 

  39. Rivière, B., Tan, J., Thompson, T.: Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations. Comput. Math. Appl. 73, 666–683 (2017)

    Article  MathSciNet  Google Scholar 

  40. Rodrigo, C., Gaspar, F.J., Hu, X., Zikatanov, L.T.: Stability and monotonicity for some discretizations of the Biot’s consolidation model. Comput. Methods Appl. Mech. Engrg. 298, 183–204 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. Ruiz-Baier, R., Lunati, I.: Mixed finite element—discontinuous finite volume element discretization of a general class of multicontinuum models. J. Comput. Phys. 322, 666–688 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  42. Sreekumar, A., Triantafyllou, S.P., Bécot, F.-X., Chevillotte, F.: Multiscale VEM for the Biot consolidation analysis of complex and highly heterogeneous domains. Comput. Methods Appl. Mech. Engrg. 375, e113543 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  43. Tang, X., Liu, Z., Zhang, B., Feng, M.: On the locking-free three-field virtual element methods for Biot’s consolidation model in poroelasticity. ESAIM Math. Model. Numer. Anal. 55, S909–S939 (2021)

    Article  MathSciNet  Google Scholar 

  44. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)

    Article  MathSciNet  Google Scholar 

  45. Yi, S.-Y.: A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55, 1915–1936 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zhao, L., Chung, E., Park, E.-J.: A locking free staggered DG method for the Biot system of poroelasticity on general polygonal meshes. IMA J. Numer. Anal., in press (2022)

Download references

Funding

The first author gratefully acknowledges funding from the DST-SERB grant CRG/2021/002410. The second author was partially supported by DICREA, Universidad del Bío-Bío, by ANID-Chile through projects FONDECYT 1220881 and by project ECOS-ANID ECOS200038-C20E05. The second and fourth authors were partially supported by project Centro de Modelamiento Matemático (CMM), FB210005, BASAL funds for centers of excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitesh Verma.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Theorem 4.1

Thanks to the Scott–Dupont theory (see [15]) we know that for every s with \(0\le s\le k\) and for every \(u\in H^{1+s}(K)\), there exists \(u_\pi \in {\mathbb {P}}_k(K)\), \(k\ge 2\), such that

$$\begin{aligned} \Vert u - u_{\pi } \Vert _{0,K} + h_K |u -u_{\pi } |_{1,K} \lesssim h_K^{1+s} |u|_{1+s,K} \quad \text {for all }K \in {\mathcal {T}}_h. \end{aligned}$$
(A.1)

We can then write the displacement and total pressure error in terms of the poroelastic projector

$$\begin{aligned} ({\varvec{u}}- {\varvec{u}}_h)(t)&= ({\varvec{u}}- I^h_{{\varvec{u}}}{\varvec{u}})(t) + (I^h_{{\varvec{u}}} {\varvec{u}}- {\varvec{u}}_h)(t) := e_{{\varvec{u}}}^I(t) + e_{{\varvec{u}}}^A(t), \\ (\psi - \psi _h)(t)&= (\psi - I^h_{\psi } \psi )(t) + (I^h_{\psi } \psi - \psi _h)(t) := e_{\psi }^I(t) + e_{\psi }^A(t). \end{aligned}$$

Then, a combination of equations (4.1a), (3.4a) and (2.4a) gives

$$\begin{aligned} a_1^h(e_{{\varvec{u}}}^A, \varvec{v}_h)+ b_1(\varvec{v}_h, e_{\psi }^A)&= (a_1({\varvec{u}},\varvec{v}_h) -a_1^h({\varvec{u}}_h, \varvec{v}_h)) + b_1(\varvec{v}_h, \psi - \psi _h) = (F-F^h)(\varvec{v}_h), \end{aligned}$$

and taking as test function \(\varvec{v}_h = \partial _t e_{{\varvec{u}}}^A\), we can write the relation

$$\begin{aligned} a_1^h(e_{{\varvec{u}}}^A, \partial _t e_{{\varvec{u}}}^A) + b_1(\partial _t e_{{\varvec{u}}}^A, e_{\psi }^A) = (F-F^h)(\partial _t e_{{\varvec{u}}}^A). \end{aligned}$$
(A.2)

Now, we write the pressure error in terms of the poroelastic projector as follows

$$\begin{aligned} (p^{\textrm{P}} - p_h^{\textrm{P}})(t) = (p^{\textrm{P}} - I^h_p p^{\textrm{P}})(t) + (I^h_p p^{\textrm{P}} - p_h^{\textrm{P}})(t) := e_{p}^{I,\textrm{P}}(t) + e_{p}^{A, \textrm{P}}(t). \end{aligned}$$

Using (4.1c), (3.4b) and (2.4b), we obtain

$$\begin{aligned}&{\tilde{a}}_2^h(\partial _t e_p^{A,\textrm{P}}, q_h^{\textrm{P}}) + a_2^h(e_p^{A, \textrm{P}}, q_h^{\textrm{P}}) - b_2(q_h^{\textrm{P}}, \partial _t e_{\psi }^{A} ) \\&\quad = ({\tilde{a}}_2^h(\partial _t I^h_p p^{\textrm{P}}, q_h^{\textrm{P}}) - {\tilde{a}}_2(\partial _t p^{\textrm{P}}, q_h^{\textrm{P}})) + b_2(q_h^{\textrm{P}}, \partial _t e_{\psi }^I) + (G- G^h)(q_h^{\textrm{P}}). \end{aligned}$$

We can take \(q_h^{\textrm{P}} = e_p^{A, \textrm{P}}\), which leads to

$$\begin{aligned} \begin{aligned}&{\tilde{a}}_2^h(\partial _t e_p^{A, \textrm{P}}, e_p^{A, \textrm{P}}) +a_2^h(e_p^{A, \textrm{P}}, e_p^{A, \textrm{P}}) - b_2(e_p^{A, \textrm{P}}, \partial _t e_{\psi }^A) \\&\quad = ({\tilde{a}}_2^h(\partial _t I^h_p p^{\textrm{P}}, e_p^{A, \textrm{P}}) - {\tilde{a}}_2(\partial _t p^{\textrm{P}}, e_p^{A, \textrm{P}}) ) + b_2(e_p^{A, \textrm{P}}, \partial _t e_{\psi }^I) + (G- G^h)(e_p^{A, \textrm{P}}). \end{aligned} \end{aligned}$$
(A.3)

Next we use (4.1b), (3.4c) and (2.4c), and this implies

$$\begin{aligned}&b_1(e_{{\varvec{u}}}^A, \phi _h)+ b_2(e_p^{A, \textrm{P}} , \phi _h) - a_3(e_{\psi }^A, \phi _h) = -b_2(e_p^{I, \textrm{P}}, \phi _h) + a_3(e_{\psi }^I, \phi _h). \end{aligned}$$

Differentiating the above equation with respect to time and taking \(\phi _h = -e_{\psi }^A\), we can assert that

$$\begin{aligned} - b_1(\partial _t e_{{\varvec{u}}}^A, e_{\psi }^A) - b_2(\partial _t e_p^{A, \textrm{P}}, e_{\psi }^A) + a_3(\partial _t e_{\psi }^A, e_{\psi }^A) = b_2(\partial _t e_p^I, e_{\psi }^A) -a_3(\partial _t e_{\psi }^I, e_{\psi }^A). \end{aligned}$$
(A.4)

Then we simply add (A.2), (A.3) and (A.4), to obtain

$$\begin{aligned} \begin{aligned}&a_1^h(e_{{\varvec{u}}}^A, \partial _t e_{{\varvec{u}}}^A) + {\tilde{a}}_2^h(\partial _t e_p^{A, \textrm{P}}, e_p^{A, \textrm{P}}) +a_2^h(e_p^{A, \textrm{P}}, e_p^{A, \textrm{P}}) + a_3(\partial _t e_{\psi }^A, e_{\psi }^A) \\&\qquad - b_2(e_p^{A, \textrm{P}}, \partial _t e_{\psi }^A) - b_2(\partial _t e_p^{A, \textrm{P}}, e_{\psi }^A)\\&\quad = (F- F^h)(\partial _{t} e_{{\varvec{u}}}^A ) + ({\tilde{a}}_2^h(\partial _t I^h_p p^{ \textrm{P}}, e_p^{A, \textrm{P}}) - {\tilde{a}}_2(\partial _{t} p^{\textrm{P}}, e_p^{A, \textrm{P}}))\\&\qquad + b_2(e_p^{A, \textrm{P}}, \partial _{t} e_{\psi }^I) + (G- G^h) (e_p^{A, \textrm{P}}) + b_2(\partial _{t} e_p^{I, \textrm{P}}, e_{\psi }^A) - a_3(\partial _{t} e_{\psi }^I, e_{\psi }^A). \end{aligned} \end{aligned}$$
(A.5)

Regarding the left-hand side of (A.5), repeating arguments to obtain alike to the stability proof, that is,

$$\begin{aligned}&a_1^h(e_{{\varvec{u}}}^A, \partial _t e_{{\varvec{u}}}^A) + {\tilde{a}}_2^h(\partial _t e_p^{A, \textrm{P}}, e_p^{A, \textrm{P}}) +a_2^h(e_p^{A, \textrm{P}}, e_p^{A, \textrm{P}}) + a_3(\partial _t e_{\psi }^A, e_{\psi }^A)\\&\quad - b_2(e_p^{A, \textrm{P}}, \partial _t e_{\psi }^A) - b_2(\partial _t e_p^{A, \textrm{P}}, e_{\psi }^A) \\&\quad \gtrsim {\mu ^{\min }}\frac{\textrm{d}}{\textrm{d}t} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A)\Vert _0^2 + c_0\frac{\textrm{d}}{\textrm{d}t} \Vert e_p^{A, \textrm{P}}\Vert _{0, \varOmega ^{\textrm{P}}}^2 + \frac{2 \kappa _{\min }}{\eta } \Vert \nabla e_p^A\Vert _{0, \varOmega ^{\textrm{P}}}^2 + \frac{1}{{ \lambda ^{\textrm{E}}}} \frac{\textrm{d}}{\textrm{d}t} \Vert e_{\psi }^{A, \textrm{E}}\Vert _{0, \varOmega ^{\textrm{E}}}^2 \\&\quad + \frac{1}{{ \lambda ^{\textrm{P}}}} \sum _{K \in \mathcal {T}_h^{\textrm{P}}} \biggl ( \alpha ^2\frac{\textrm{d}}{\textrm{d}t}\Vert (I-\varPi ^0_K) e_p^{A,\textrm{P}}\Vert _{0,K}^2 +\frac{\textrm{d}}{\textrm{d}t} \Vert \alpha \varPi ^0_K e_p^{A,\textrm{P}} -e_{\psi }^{A,\textrm{P}}\Vert _{0,K}^2 \biggr ) . \end{aligned}$$

Then integrating equation (A.5) in time and using the consistency of \({\tilde{a}}_2(\cdot , \cdot )\), implies the bound

$$\begin{aligned}&{\mu _{\min }} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(t))\Vert _0^2 + c_0 \Vert e_p^{A, \textrm{P}} (t)\Vert _{0, \varOmega ^{\textrm{P}}}^2 + \frac{1}{{ \lambda ^{\textrm{E}}}} \Vert e_{\psi }^{A, \textrm{E}}(t)\Vert _{0, \varOmega ^{\textrm{E}}}^2 + \frac{\kappa _{\min }}{\eta }\int _0^t \Vert \nabla e_p^{A, \textrm{P}}(s)\Vert _{0, \varOmega ^{\textrm{P}}}^2 \, \textrm{d}s \\&\qquad + \frac{1}{{ \lambda ^{\textrm{P}}}} \sum _{K \in \mathcal {T}_h^{\textrm{P}}} \Bigl (\alpha ^2 \Vert (I-\varPi ^{0,k}_K) e_p^{A, \textrm{P}}(t)\Vert _{0,K}^2 + \Vert (\alpha \varPi ^{0,k}_K e_p^{A, \textrm{P}} -e_{\psi }^{A, \textrm{P}})(t)\Vert _{0,K}^2 \Bigr ) \\&\quad \lesssim {\mu _{\min }} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(0))\Vert _0^2 + c_0 \Vert e_p^{A, \textrm{P}} (0)\Vert _{0, \varOmega ^{\textrm{P}}}^2 + \frac{1}{{ \lambda ^{\textrm{E}}}} \Vert e_{\psi }^{A, \textrm{E}}(0)\Vert _{0, \varOmega ^{\textrm{E}}}^2\\&\qquad + \frac{1}{{ \lambda ^{\textrm{P}}}} \sum _{K \in \mathcal {T}_h^{\textrm{P}}} \Bigl (\alpha ^2 \Vert (I-\varPi ^{0,k}_K) e_p^{A, \textrm{P}}(0)\Vert _{0,K}^2 + \Vert (\alpha \varPi ^{0,k}_K e_p^{A, \textrm{P}} -e_{\psi }^A)(0)\Vert _{0,K}^2 \Bigr ) \\&\qquad + \underbrace{ \int _0^t \bigl ((\varvec{b}- \varvec{b}_h)(s),\partial _{t} e_{{\varvec{u}}}^A(s) \bigr )_{0, \varOmega } \, \textrm{d}s}_{=:D_1} + \underbrace{\int _0^t \bigl ((\ell ^{\textrm{P}} - \ell _h^{ \textrm{P}})(s), e_p^{A, \textrm{P}}(s) \bigr )_{0, \varOmega ^{\textrm{P}}}\, \textrm{d}s}_{=:D_2} \\&\qquad + \underbrace{\int _0^t \sum _{K \in \mathcal {T}_h^{\textrm{P}}} \Bigl ({\tilde{a}}_2^{h,K} \bigl (\partial _t(I^h_p p^{\textrm{P}} - p_{\pi }^{\textrm{P}})(s), e_p^{A, \textrm{P}}(s) \bigr ) - {\tilde{a}}^{K}_2 \bigl (\partial _t(p^{\textrm{P}} - p_{\pi }^{\textrm{P}})(s), e_p^{A, \textrm{P}}(s) \bigr ) \Bigr ) \, \textrm{d}s}_{=:D_3} \\&\qquad + \underbrace{\int _0^t \Bigl (b_2 \bigl (e_p^{A, \textrm{P}}(s), \partial _{t} e_{\psi }^I(s) \bigr ) + b_2 \bigl (\partial _{t} e_p^{I, \textrm{P}} (s), e_{\psi }^A (s)\bigr ) - a_3 \bigl (\partial _{t} e_{\psi }^I(s), e_{\psi }^A(s) \bigr ) \Bigr ) \, \textrm{d}s}_{=:D_4}. \end{aligned}$$

Then we integrate by parts in time and invoke the orthogonality property of the \(L^2\)-projection, which yields

$$\begin{aligned} D_1&= \sum _{K \in \mathcal {T}_h} \Bigl ( \bigl ((\textbf{I}- \varvec{\varPi }^{0,k-2}_K) \varvec{b}(t), (\textbf{I}- \varvec{\varPi }^{0,0}_K) e_{{\varvec{u}}}^A(t) \bigr )_{0, K}\\&\quad - \bigl ((\textbf{I}- \varvec{\varPi }^{0,k-2}_K) \varvec{b}(0), (\textbf{I}- \varvec{\varPi }^{0,0}_K) e_{{\varvec{u}}}^A(0) \bigr )_{0, K} \\&\quad - \int _0^t \bigl (\partial _{t} (\textbf{I}- \varvec{\varPi }^{0,k-2}_K) \varvec{b}(s), (\textbf{I}- \varvec{\varPi }^{0,0}_K) e_{{\varvec{u}}}^A(s) \bigr )_{0, K} \, \textrm{d}s \Bigr ), \end{aligned}$$

and use Cauchy–Schwarz and Young’s inequalities along with Korn’s inequality to arrive at

$$\begin{aligned} D_1&\le \frac{{\mu _{\min }} }{2} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(t))\Vert _0^2 + {C(\mu _{\min })} h^k \biggl (h^k |\varvec{b}(t)|_{k-1}^2 + |\varvec{b}(0)|_{k-1} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(0))\Vert _0 \\&\quad + \int _0^t | \partial _{t} \varvec{b}(s)|_{k-1} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(s))\Vert _{0}\, \textrm{d}s \biggr ), \end{aligned}$$

where we have used standard error estimate for the \(L^2\)-projection \(\varvec{\varPi }_K^{0,k}\) onto piecewise constant functions. Using again Cauchy–Schwarz inequality, standard error estimates for \(\varPi _K^{0,k}\) on the term \(D_2\), Young’s and Poincaré inequalities readily gives

$$\begin{aligned}&D_2 {\le C} h^k \int _0^t |\ell ^{\textrm{P}} (s)|_{k-1, \varOmega ^{\textrm{P}}} \Vert \nabla e_p^{A, \textrm{P}}(s)\Vert _{0, \varOmega ^{\textrm{P}}}\, \,\textrm{d}s\le {C(\kappa _{\min },\eta )} h^{2k} \int _{0}^t |\ell ^{\textrm{P}} (s)|_{k-1, \varOmega ^{\textrm{P}}}^2 \,\textrm{d}s\\&\quad + \frac{\kappa _{\min }}{{4} \eta } \int _{0}^t \Vert \nabla e_p^{A, \textrm{P}}(s)\Vert _{0, \varOmega ^{\textrm{P}}}^2 \,\textrm{d}s. \end{aligned}$$

On the other hand, considering the polynomial approximation \(p_{\pi }^{\textrm{P}}\) (cf. (A.1)) of \(p^{\textrm{P}}\), utilising the triangle inequality, Young’s and Poincaré inequalities yield

$$\begin{aligned} D_3&{\le C(\kappa _{\min },\eta ) } h^{2(k+1)} \bigg (c_0 + \frac{\alpha ^2}{{\lambda ^{\textrm{P}}}}\bigg )^2 \int _0^t |\partial _{t} p^{\textrm{P}}(s)|_{k+1, \varOmega ^{\textrm{P}}}^2 \,\textrm{d}s+ \frac{\kappa _{\min }}{ {4} \eta } \int _{0}^t \Vert \nabla e_p^{A, \textrm{P}}(s)\Vert _{0, \varOmega ^{\textrm{P}}}^2 \,\textrm{d}s. \end{aligned}$$

Also,

$$\begin{aligned} D_4&\le \frac{{C}}{\lambda } h^k \int _0^t \Bigl ( \alpha ( | \partial _{t} \psi ^{\textrm{P}} (s)|_{k, \varOmega ^{\textrm{P}}} + |\partial _t {\varvec{u}}^{\textrm{P}}(s)|_{k+1,\varOmega ^{\textrm{P}}} + |\partial _t {\varvec{u}}^{\textrm{E}}(s)|_{k+1, \varOmega ^{\textrm{E}}} )\Vert e_p^{A, \textrm{P}} (s)\Vert _{0, \varOmega ^{\textrm{P}}} \\&\quad + (\alpha h |\partial _{t} p^{\textrm{P}}(s) |_{k+1, \varOmega ^{\textrm{P}}} + | \partial _{t} \psi ^{\textrm{P}} (s)|_{k, \varOmega ^{\textrm{P}}} + | \partial _{t} \psi ^{\textrm{E}} (s)|_{k, \varOmega ^{\textrm{E}}} + |\partial _t {\varvec{u}}(s)|_{k+1}) \Vert e_{\psi }^A (s)\Vert _0 \Bigr ) \, \textrm{d}s. \end{aligned}$$

Using the discrete inf-sup condition (cf. (3.3)) and a combination of equations (4.1a), (3.4a) and (2.4a), we get

$$\begin{aligned} {{\tilde{\beta }}} \Vert e_{\psi }^A(t) \Vert _0&\le \sup _{\varvec{v}_h \in \textbf{V}_h} \frac{b_1(\varvec{v}_h, e_{\psi }^A(t))}{\Vert \varvec{v}_h \Vert _1} { ~\le C \big (} h^k {\rho } | \varvec{b}(t) |_{k-1} + {\mu _{\max }} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(t))\Vert _0 {\big )}. \end{aligned}$$
(A.6)

Then, with the help of Young’s and Poincaré inequalities, the bound of \(D_4\) becomes

$$\begin{aligned}&D_4 {\le } \frac{{C}}{\lambda } h^k \int _0^t \Bigl ( (\alpha {h} |\partial _{t} p^{\text {P}}(s) |_{k+1, \varOmega ^{\text {P}}} + | \partial _{t} \psi ^{\text {P}} (s)|_{k, \varOmega ^{\text {P}}} + | \partial _{t} \psi ^{\text {E}} (s)|_{k, \varOmega ^{\text {E}}} + |\partial _t {\textbf{u}}^{\text {P}}(s)|_{k+1, \varOmega ^{\text {P}}} \\ {}&\qquad \qquad \quad + |\partial _t {\textbf{u}}^{\text {E}}(s)|_{k+1, \varOmega ^{\text {E}}} ) \times ( h^k {\rho |\textbf{b}(s)|_{k-1}} + {\mu _{\max }} \Vert \mathbf {\varepsilon }(e_{{\textbf{u}}}^A(s))\Vert _0) \\ {}&\qquad \qquad \quad + \alpha \Vert e_p^{A, \text {P}} (s)\Vert _{0, \varOmega ^{\text {P}}} (| \partial _{t} \psi ^{\text {P}} (s)|_{k, \varOmega ^{\text {P}}} + |\partial _t {\textbf{u}}(s)|_{k+1} ) \Bigr ) \,\text {d}s. \end{aligned}$$

Combining the bounds of all \(D_i, i=1,2,3,4\) and proceeding in a similar fashion as for the bounds in the stability proof in [18] (using Lemma 3.1 and (3.6)), we can eventually conclude that

$$\begin{aligned}&{\mu _{\min }} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(t))\Vert _0^2 + c_0 \Vert e_p^{A,\textrm{P}} (t)\Vert _{0, \varOmega ^{\textrm{P}}}^2 + \frac{1}{{\lambda ^{\textrm{E}}}} \Vert e_{\psi }^{A, \textrm{E}}(t)\Vert _{0, \varOmega ^{\textrm{E}}}^2 + \frac{\kappa _{\min }}{\eta } \int _0^t \Vert \nabla e_p^{A, \textrm{P}} (s)\Vert _{0, \varOmega ^{\textrm{P}}}^2 \, \textrm{d} s \\&\quad \lesssim {\mu _{\min }} \Vert \varvec{\varepsilon }(e_{{\varvec{u}}}^A(0))\Vert _0^2 + \Big (c_0 + \frac{\alpha ^2}{{\lambda ^{\textrm{P}}}} \Big ) \Vert e_p^{A, \textrm{P}} (0)\Vert _{0, \varOmega ^{\textrm{P}}}^2 + \frac{1}{{\lambda ^{\textrm{E}}}} \Vert e_{\psi }^{A,\textrm{E}}(0)\Vert _{0, \varOmega ^{\textrm{E}}}^2 \\&\qquad + {C(\mu _{\min }, \kappa _{\min }, \eta ) h^{2k} \Biggl ( \sup _{t \in [0,t_{\text {final}}] } |\varvec{b}(t)|_{k-1}^2 \!+\! \int _0^t \Bigl ( h^2 \big ( c_0 \!+\! \frac{\alpha ^2}{{\lambda ^{\textrm{P}}}}\big )^2 |\partial _{t} p^{\textrm{P}}(s) |_{k+1, \varOmega ^{\textrm{P}}}^2 \!+\! |\ell ^{\textrm{P}} (s)|_{k\!-\!1, \varOmega ^{\textrm{P}}}^2 \Bigr ) \, \textrm{d}s } \\&\qquad { + \biggl ( \int _0^t \Bigl ( |\varvec{b}(s)|_{k-1} + | \partial _{t}\varvec{b}(s)|_{k-1} + h \Big ( c_0 + \frac{\alpha ^2}{{\lambda ^{\textrm{P}}}}\Big ) |\partial _{t} p^{\textrm{P}}(s) |_{k+1, \varOmega ^{\textrm{P}}} } \\&\qquad {+ \frac{1}{{\lambda _{\min }}} \big ( | \partial _{t} \psi ^{\textrm{P}} (s)|_{k, \varOmega ^{\textrm{P}}} +| \partial _{t} \psi ^{\textrm{E}} (s)|_{k, \varOmega ^{\textrm{E}}} +|\partial _t {\varvec{u}}^{\textrm{P}}(s)|_{k+1, \varOmega ^{\textrm{P}}} +|\partial _t {\varvec{u}}^{\textrm{E}}(s)|_{k+1, \varOmega ^{\textrm{E}}} \big ) \Bigr ) \, \textrm{d}s \biggr )^2\Biggr ).} \end{aligned}$$

Then choosing \({\varvec{u}}_h(0): ={\varvec{u}}_I(0)\), \(\psi _h(0): = \varPi ^{0,k-1}\psi (0)\), \(p_h^{\textrm{P}}(0): = p_I^{\textrm{P}}(0)\) and applying the triangle inequality together with (A.6), completes the rest of the proof.

Appendix B: Proof of Theorem 4.2

As in the semidiscrete case we split the individual errors as

$$\begin{aligned} {\varvec{u}}(t_n) - {\varvec{u}}_h^n&= ({\varvec{u}}(t_n) - I^h_{{\varvec{u}}} {\varvec{u}}(t_n)) + (I^h_{{\varvec{u}}} {\varvec{u}}(t_n)- {\varvec{u}}_h^n)=: E_{{\varvec{u}}}^{I,n} + E_{{\varvec{u}}}^{A,n}, \\ \psi (t_n) - \psi _h^n&= (\psi (t_n) - I^h_{\psi } \psi (t_n)) + (I^h_{\psi } \psi (t_n)- \psi _h^n)=: E_{\psi }^{I,n} + E_{\psi }^{A,n}, \\ p^{\textrm{P}}(t_n) - p_h^{n,\textrm{P}}&= (p^{\textrm{P}}(t_n) - I^h_{p} p^{\textrm{P}}(t_n)) + (I^h_{p} p^{\textrm{P}}(t_n)- p_h^{n,\textrm{P}})=: E_{p}^{I,n} + E_{p}^{A,n}, \end{aligned}$$

where the error terms are \(E_{p}^{I,n}:=E_{p}^{I,n} |_{\varOmega ^{\textrm{P}}}, E_{p}^{A,n}:= E_{p}^{A,n} |_{\varOmega ^{\textrm{P}}}\). Then, from estimate (4.2a) and following the steps of the proof of Theorem 4.1 we get the bounds

$$\begin{aligned} \Vert E_{{\varvec{u}}}^{I,n} \Vert _1&\lesssim h^k ( | {\varvec{u}}(0) |_{k+1} + | \psi ^{\textrm{P}}(0) |_{k,\varOmega ^{\textrm{P}}} + | \psi ^{\textrm{E}}(0) |_{k,\varOmega ^{\textrm{E}}} \nonumber \\&\quad + \Vert \partial _t{\varvec{u}}\Vert _{\textbf{L}^1(0,t_n; [H^{k+1}(\varOmega )]^2)} + \Vert \partial _t \psi \Vert _{L^1(0,t_n; k)} ), \end{aligned}$$
(B.1a)
$$\begin{aligned} \Vert E_{\psi }^{I,n} \Vert _0&\lesssim h^k ( | {\varvec{u}}(0) |_{k+1} + | \psi ^{\textrm{P}}(0) |_{k,\varOmega ^{\textrm{P}}} + | \psi ^{\textrm{E}}(0) |_{k,\varOmega ^{\textrm{E}}} \nonumber \\&\quad + \Vert \partial _t{\varvec{u}}\Vert _{\textbf{L}^1(0,t_n; [H^{k+1}(\varOmega )]^2)} + \Vert \partial _t\psi \Vert _{L^1(0,t_n; k)} ), \end{aligned}$$
(B.1b)
$$\begin{aligned} \Vert E_{p}^{I,n} \Vert _{1, \varOmega ^{\textrm{P}}}&\lesssim h^k ( | p^{\textrm{P}}(0) |_{k+1, \varOmega ^{\textrm{P}}} + \Vert \partial _t p^{\textrm{P}}\Vert _{L^1(0,t_n; H^{k+1}(\varOmega ^{\textrm{P}}))}), \end{aligned}$$
(B.1c)

where \(\Vert \partial _t \psi \Vert _{L^1(0,t_n;k)}:= \Vert \partial _t \psi ^{\textrm{P}}\Vert _{L^1(0,t_n; H^k(\varOmega ^{\textrm{P}}))} + \Vert \partial _t \psi ^{\textrm{E}}\Vert _{L^1(0,t_n; H^k(\varOmega ^{\textrm{E}}))}\). From Eqs. (4.1a), (3.10a) and (2.4a), we readily get

$$\begin{aligned} a_1^h(E_{{\varvec{u}}}^{A,n},\varvec{v}_h) + b_1(\varvec{v}_h, E_{\psi }^{A,n}) = F^n(\varvec{v}_h) - F^{h,n}(\varvec{v}_h). \end{aligned}$$
(B.2)

We then use (4.1b) and (3.10c), and proceed to differentiate (2.4c) with respect to time. This implies

$$\begin{aligned} \begin{aligned}&b_1(E_{{\varvec{u}}}^{A,n} - E_{{\varvec{u}}}^{A,n-1}, \phi _h) + b_2(E_p^{A,n}-E_p^{A,n-1}, \phi _h) - a_3(E_{\psi }^{A,n} - E_{\psi }^{A,n-1}, \phi _h) \\&\quad = b_1(({\varvec{u}}(t_n) - {\varvec{u}}(t_{n-1})) - (\varDelta t) \partial _{t} {\varvec{u}}(t_n), \phi _h) + b_2((I_p^h p^{\textrm{P}}(t_n) - I_p^h p^{\textrm{P}}(t_{n-1}))\\&\qquad - (\varDelta t) \partial _{t} p^{\textrm{P}}(t_n), \phi _h) - a_3((I_{\psi }^h \psi (t_n) - I_{\psi }^h \psi (t_{n-1})) - (\varDelta t) \partial _{t} \psi (t_n), \phi _h). \end{aligned} \end{aligned}$$
(B.3)

Choosing \(\varvec{v}_h = E_{{\varvec{u}}}^{A,n} - E_{{\varvec{u}}}^{A,n-1 }\) in (B.2) and \(\phi _h = - E_{\psi }^{A,n}\) in (B.3) and adding the results, gives

$$\begin{aligned}&a_1^h(E_{{\varvec{u}}}^{A,n}, E_{{\varvec{u}}}^{A,n}- E_{{\varvec{u}}}^{A,n-1}) + a_3(E_{\psi }^{A,n} - E_{\psi }^{A,n-1}, E_{\psi }^{A,n}) - b_2(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{\psi }^{A,n}) \nonumber \\&\quad = ( \varvec{b}(t_n) - \varvec{b}^n_h, E_{{\varvec{u}}}^{A,n}- E_{{\varvec{u}}}^{A,n-1 } )_{0, \varOmega } - b_1(({\varvec{u}}(t_n) - {\varvec{u}}(t_{n-1})) - (\varDelta t) \partial _{t} {\varvec{u}}(t_n), E_{\psi }^{A,n}) \nonumber \\&\qquad - b_2((I_p^h p^{\textrm{P}}(t_n) - I_p^h p^{\textrm{P}}(t_{n-1})) - (\varDelta t) \partial _{t} p^{\textrm{P}}(t_n), E_{\psi }^{A,n}) \nonumber \\&\qquad + a_3((I_{\psi }^h \psi (t_n) - I_{\psi }^h \psi (t_{n-1}))- (\varDelta t) \partial _{t} \psi (t_n), E_{\psi }^{A,n}). \end{aligned}$$
(B.4)

Next, and as a consequence of using (4.1c), (3.4b) and (2.4b) with \(q_h^{\textrm{P}} = E_p^{A,n}\), we are left with

$$\begin{aligned}&{\tilde{a}}_2^h(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{p}^{A,n}) + \varDelta t a_2^h(E_{p}^{A,n}, E_{p}^{A,n}) - b_2(E_{p}^{A,n}, E_{\psi }^{A,n} - E_{\psi }^{A,n-1}) \nonumber \\&\quad = \varDelta t ( \ell ^{\textrm{P}}(t_n)- \ell ^{n,\textrm{P}}_h, E_{p}^{A,n} )_{0, \varOmega ^{\textrm{P}}} + {\tilde{a}}_2^h( I^h_p p^{\textrm{P}}(t_n) - I^h_p p^{\textrm{P}}(t_{n-1}), E_{p}^{A,n}) \nonumber \\&\qquad - {\tilde{a}}_2((\varDelta t) \partial _{t} p^{\textrm{P}}(t_n), E_{p}^{A,n}) + b_2(E_{p}^{A,n}, (\varDelta t) \partial _{t} \psi - (I^h_{\psi } \psi (t_n)) - I^h_{\psi } \psi (t_{n-1})). \end{aligned}$$
(B.5)

Adding (B.4)–(B.5) and repeating the arguments used in deriving stability, we can assert that

$$\begin{aligned}&a_3(E_{\psi }^{A,n} - E_{\psi }^{A,n-1}, E_{\psi }^{A,n}) - b_2(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{\psi }^{A,n})\\&\qquad - b_2(E_{p}^{A,n}, E_{\psi }^{A,n} - E_{\psi }^{A,n-1}) + {\tilde{a}}_2^h(E_{p}^{A,n} - E_{p}^{A,n-1}, E_{p}^{A,n}) \\&\quad = (\varDelta t) \bigg ( c_0(\delta _t E_{p}^{A,n} , E_{p}^{A,n})_{0,\varOmega ^{\textrm{P}}} + \frac{1}{\lambda } \sum _{K \in \mathcal {T}_h^{\textrm{P}}} \big (\alpha ^2 (\delta _t (I- \varPi ^{0,k}_K) E_p^{A,n}, (I- \varPi ^{0,k}_K) E_p^{A,n})_{0,K} \\&\qquad -(\delta _t (\alpha \varPi ^{0,k}_K E_p^{A,n} - E_{\psi }^{A,n}), \alpha \varPi ^{0,k}_K E_p^{A,n} - E_{\psi }^{A,n})_{0,K} \big ) + \frac{\varDelta t}{\lambda } (\delta _t E_{\psi }^{A,n} , E_{\psi }^{A,n})_{0,\varOmega ^{\textrm{E}}} \bigg ), \end{aligned}$$

The left-hand side can be bounded using the inequality

$$\begin{aligned} (f_h^n - f_h^{n-1}, f_h^n) \ge \frac{1}{2} \bigl (\Vert f_h^n \Vert _0^2 - \Vert f_h^{n-1}\Vert _0^2 \bigr ), \end{aligned}$$

and then summing over n we get

$$\begin{aligned}&{\mu _{\min }} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,n})\Vert _0^2 + c_0 \Vert E_{p}^{A,n}\Vert _{0, \varOmega ^{\textrm{P}}}^2 + (1/ {\lambda ^{\textrm{E}}}) \Vert E_{\psi }^{A,n}\Vert _{0, \varOmega ^{\textrm{E}}}^2 + (\varDelta t) \frac{\kappa _{\min }}{\eta } \sum _{j=1}^n \Vert \nabla E_{p}^{A,j} \Vert _{0, \varOmega ^{\textrm{P}}}^2 \nonumber \\&\qquad + (1/{\lambda ^{\textrm{P}}}) \sum _{K \in \mathcal {T}_h^{\textrm{P}}}\bigg ( \alpha ^2 \Vert (I- \varPi ^{0,k}_K) E_p^{A,n} \Vert _{0,K}^2 + \Vert \alpha \varPi ^{0,k}_K E_p^{A,n} - E_{\psi }^{A,n}\Vert _{0,K}^2 \bigg ) \\&\quad \le {\mu _{\min }} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,0})\Vert _0^2 + c_0 \Vert E_{p}^{A,0}\Vert _{0, \varOmega ^{\textrm{P}}}^2 + (1/ {\lambda ^{\textrm{E}}}) \Vert E_{\psi }^{A,0}\Vert _{0, \varOmega ^{\textrm{E}}}^2 \\&\qquad + (1/{\lambda ^{\textrm{P}}}) \sum _{K \in \mathcal {T}_h^{\textrm{P}}} \bigg ( \alpha ^2 \Vert (I- \varPi ^{0,k}_K) E_p^{A,0} \Vert _{0,K}^2 + \Vert \alpha \varPi ^{0,k}_K E_p^{A,0} - E_{\psi }^{A,0} \Vert _{0,K}^2 \bigg ) \\&\qquad + \underbrace{ \sum _{j=1}^n ( \varvec{b}(t_j) - \varvec{b}^j_h, E_{{\varvec{u}}}^{A,j}- E_{{\varvec{u}}}^{A,j-1} )_{0,\varOmega }}_{=:L_1} + \underbrace{ \sum _{j=1}^n \varDelta t ( \ell ^{\textrm{P}}(t_j)- \ell ^{j,\textrm{P}}_h, E_{p}^{A,j} )_{0,\varOmega ^{\textrm{P}}}}_{=:L_2} \nonumber \\&\qquad - \underbrace{ \sum _{j=1}^n b_1(({\varvec{u}}(t_j) - {\varvec{u}}(t_{j-1})) - (\varDelta t) \partial _{t} {\varvec{u}}(t_j), E_{\psi }^{A,j})}_{=:L_3} \nonumber \\&\qquad - \underbrace{ \sum _{j=1}^n b_2((I_p^h p^{\textrm{P}}(t_j) - I_p^h p^{\textrm{P}}(t_{j-1})) - (\varDelta t) \partial _{t} p^{\textrm{P}}(t_j), E_{\psi }^{A,j})}_{=:L_4} \nonumber \\&\qquad + \underbrace{ \sum _{j=1}^n a_3((I_{\psi }^h \psi (t_j) - I_{\psi }^h \psi (t_{j-1})) - (\varDelta t) \partial _{t} \psi (t_j), E_{\psi }^{A,j}) }_{:=L_5} \nonumber \\&\qquad + \underbrace{ \sum _{j=1}^n ({\tilde{a}}_2^h( I^h_p p^{\textrm{P}}(t_j) - I^h_p p^{\textrm{P}}(t_{j-1}), E_{p}^{A,j}) - {\tilde{a}}_2((\varDelta t) \partial _{t} p^{\textrm{P}}(t_j), E_{p}^{A,j}) )}_{:=L_6} \nonumber \\&\qquad + \underbrace{ \sum _{j=1}^n b_2(E_{p}^{A,j}, (\varDelta t) \partial _{t} \psi - (I^h_{\psi } \psi (t_j) - I^h_{\psi } \psi (t_{j-1}))}_{:=L_7}. \end{aligned}$$

We bound the term \(L_1\) with the help of the following formula

$$\begin{aligned} \sum _{j=1}^n (f_h^j - f_h^{j-1}, g_h^j )= (f_h^n, g_h^n) - (f_h^0, g_h^0)-\sum _{j=1}^n (f_h^{j-1}, g_h^j- g_h^{j-1}), \end{aligned}$$

and in combination with the orthogonality property of projection \(\varvec{\varPi }^{0,k}_K\) onto piecewise polynomials, and applying Taylor expansion

$$\begin{aligned} f^j - f^{j-1} = (\varDelta t) \partial _{t} f^j - \int _{t_{j-1}}^{t_j} (s-t_{j-1})\partial _{tt} f(s) \,\textrm{d}s, \end{aligned}$$

we get

$$\begin{aligned} L_1&{ = \sum _{K \in \mathcal {T}_h} \bigg ( ((\textbf{I}- \varvec{\varPi }^{0,k}_K)\varvec{b}(t_n), (\textbf{I}- \varvec{\varPi }^{0,0}_K) E_{{\varvec{u}}}^{A,n})_{0,K} - ((\textbf{I}- \varvec{\varPi }^{0,k}_K)\varvec{b}(0), (\textbf{I}- \varvec{\varPi }^{0,0}_K)E_{{\varvec{u}}}^{A,0})_{0,K}} \\&\quad {- \sum _{j=1}^{n} \left( (\textbf{I}- \varvec{\varPi }^{0,k}_K) \bigg ((\varDelta t)\partial _t \varvec{b}^j - \int _{t_{j-1}}^{t_j} (s-t_{j-1}) \partial _{tt}\varvec{b}(s) \,\textrm{d}s\bigg ), E_{{\varvec{u}}}^{A,j-1} \right) _{0,K} \bigg ).} \end{aligned}$$

Then the Cauchy–Schwarz and Korn inequalities, the estimates of projection \(\varvec{\varPi }^{0,k}_K\),and finally using the generalised Young’s inequality, gives the bound

$$\begin{aligned} L_1&{ \le }\frac{{\mu _{\min }}}{2} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,n})\Vert _0^2 +{C(\mu _{\min })} h^{2k} |\varvec{b}(t_n) |_{k-1}^2 + C(\mu _{\min }) h^k |b(t_0)|_{k-1}~ {\mu _{\min }^{{1/2}}} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,0})\Vert _0 \\&\qquad +{ (\varDelta t) ~ \sum _{j=1}^n C(\mu _{\min }) \Big (\Vert \partial _{t} \varvec{b}^j \Vert _{0} + (\varDelta t)^{1/2} \Vert \partial _{tt} \varvec{b}\Vert _{\textbf{L}^2(t_{j-1},t_j;[L^2(\varOmega )]^2)} \Big )} {\mu _{\min }^{{1/2}}} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,j-1}) \Vert _0. \end{aligned}$$

Then the estimate satisfied by the projection \(\varPi ^{0,k}_K\) along with Poincaré and Young’s inequalities yield

$$\begin{aligned} L_2 \,&{ = \sum _{j=1}^n \varDelta t ((I - \varPi ^{0,k}_K)\ell ^{\textrm{P}}(t_j), (I - \varPi ^{0,0}_K)E_{p}^{A,j} )_{0,\varOmega ^{\textrm{P}}} } \\&{\le C(\kappa _{\min },\eta )} {h^{2k} } (\varDelta t) \sum _{j=1}^n | \ell ^{\textrm{P}}(t_j)|_{k-1, \varOmega ^{\textrm{P}}}^2 + (\varDelta t) \frac{\kappa _{\min }}{6 \eta } \sum _{j=1}^n \Vert \nabla E_{p}^{A,j}\Vert _{0, \varOmega ^{\textrm{P}}}^2. \end{aligned}$$

The discrete inf-sup condition (3.3) implies that

$$\begin{aligned} \Vert E_{\psi }^{A,j} \Vert _0 \lesssim { h^k \Vert \varvec{b}^j\Vert _{k-1} + {\mu _{\max }} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,j}) \Vert _0 \le h^k \Vert \varvec{b}^j\Vert _{k-1} + C(\mu ) {\mu _{\min }^{1/2}} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,j}) \Vert _0.} \end{aligned}$$
(B.6)

Applying an expansion in Taylor series, together with (B.6) the Cauchy–Schwarz inequality enable us to write

$$\begin{aligned} L_3 \,&{ \lesssim \sum _{j=1}^n \Vert ({\varvec{u}}(t_j) - {\varvec{u}}(t_{j-1})) - (\varDelta t) \partial _{t} {\varvec{u}}(t_j) \Vert _0 \Vert E_{\psi }^{A,j} \Vert _0 }\\&\lesssim {(\varDelta t)^{3/2}\sum _{j=1}^n \Vert \partial _{tt} {\varvec{u}}\Vert _{\textbf{L}^2(t_{j-1},t_j;[L^2(\varOmega )]^2)} \Big ( h^k \Vert \varvec{b}^j\Vert _{k-1} + C(\mu ) {\mu _{\min }^{1/2}} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,j}) \Vert _0 \Big ).} \end{aligned}$$

Then, applying again the Cauchy–Schwarz inequality, and after using the interpolation estimates (4.2b), the bound (B.6), we get

$$\begin{aligned} L_4 \,&{\lesssim \frac{\alpha }{\lambda ^{\textrm{P}}} \sum _{j=1}^n (\varDelta t) \Big ( \Vert I_p^h (\delta _t p^{\textrm{P}}(t_j)) - \delta _t p^{\textrm{P}}(t_j) \Vert _{0, \varOmega ^{\textrm{P}}} + \Vert \delta _t p^{\textrm{P}}(t_j)- \partial _{t} p^{\textrm{P}}(t_j) \Vert _{0, \varOmega ^{\textrm{P}}} \Big ) \Vert E_{\psi }^{A,j} \Vert _{0, \varOmega ^{\textrm{P}}}} \\&\lesssim { \frac{\alpha }{{\lambda ^{\textrm{P}}}} (\varDelta t)^{1/2} \sum _{j=1}^n \bigg ( h^{k+1} \Vert \partial _{t}p^{\textrm{P}}\Vert _{L^2(t_{j-1},t_j, H^{k+1}( \varOmega ^{\textrm{P}}))} + (\varDelta t ) \Vert \partial _{tt} p^{\textrm{P}}\Vert _{L^2(t_{j-1},t_j, L^2(\varOmega ^{\textrm{P}}))} \bigg )} \\&\quad \times {( h^k \Vert \varvec{b}^j\Vert _{k-1} + C(\mu ) {\mu _{\min }^{1/2}} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,j}) \Vert _{0} ).} \end{aligned}$$

On the other hand, the stability of \(a_3(\cdot , \cdot )\), the proof for the bound of \(L_4\) , and the interpolant estimate (4.2a) gives

$$\begin{aligned} L_5&{\lesssim \frac{1}{\lambda } \sum _{j=1}^n (\varDelta t) \Big ( \Vert I_{\psi }^h (\delta _t \psi (t_j) ) - \delta _t \psi (t_j) \Vert _{0} + \Vert \delta _t \psi (t_j) - \partial _{t} {\psi }(t_j) \Vert _{0} \Big ) \Vert E_{\psi }^{A,j} \Vert _{0} } \\&{\lesssim \frac{1}{\lambda _{\min }} (\varDelta t)^{1/2} \sum _{j=1}^n \bigg ( h^k \big (\Vert \partial _t{\varvec{u}}\Vert _{\textbf{L}^2(t_{j-1},t_j; [H^{k+1}(\varOmega )]^2)}^2 + \Vert \partial _t\psi \Vert _{L^2(t_{j-1},t_j; H^k(\varOmega ))}^2 \big )^{1/2} } \\&\quad + {(\varDelta t) \Vert \partial _{tt} \psi \Vert _{L^2(t_{j-1},t_j;L^2(\varOmega ))} \bigg ) ( h^k \Vert \varvec{b}^j\Vert _{k-1} + C(\mu ) {\mu _{\min }^{1/2}} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,j}) \Vert _0 ),} \end{aligned}$$

where \(\Vert \partial _t v\Vert _{\textbf{L}^2(t_{j-1},t_j; H(\varOmega ))}^2:= \sum _{D=\varOmega ^{\textrm{P}}, \varOmega ^{\textrm{E}}} \Vert \partial _t v^D\Vert _{\textbf{L}^2(t_{j-1},t_j; H(D))}^2\) for \(v={\varvec{u}}, \psi \) with space \(H(D)=[H^{k+1}(D)]^2, H^k(D)\) respectively. The polynomial approximation \(\varPi ^{0,k}_K p^{\textrm{P}}\) for fluid pressure, consistency of the bilinear form \({\tilde{a}}_2^h(\cdot , \cdot )\), stability of the bilinear forms \({\tilde{a}}_2(\cdot , \cdot ), {\tilde{a}}_2^h(\cdot , \cdot )\), the usage of the Cauchy–Schwarz, Poincaré and Young’s inequalities gives

$$\begin{aligned} L_6&{\le C \Big ( c_0 +\frac{\alpha ^2}{{\lambda ^{\textrm{P}}}} \Big ) \sum _{j=1}^n \sum _{K \in \mathcal {T}_h^{\textrm{P}}} (\varDelta t) \Big ( \Vert (I^h_p - \varPi ^{0,k}_K) (\delta _t p^{\textrm{P}}(t_j) ) \Vert _{0,K} + \Vert (I- \varPi ^{0,k}_K )(\delta _t p^{\textrm{P}}(t_j) ) \Vert _{0,K} } \\&\qquad \qquad \qquad \qquad \qquad \qquad {+ \Vert \delta _t p^{\textrm{P}}(t_j) - \partial _{t} p^{\textrm{P}}(t_j) \Vert _{0,K} \Big ) \Vert \nabla E_{p}^{A,j} \Vert _{0, K} }\\&{\le C(\kappa _{\min }, \eta ) \Big ( c_0 +\frac{\alpha ^2}{\lambda ^{\textrm{P}}} \Big ) \sum _{j=1}^n (\varDelta t)^{1/2}} \sum _{K \in \mathcal {T}_h^{\textrm{P}}} \! \Big ( h^{k+1} \Vert \partial _t p^{\textrm{P}} \Vert _{L^2(0,t_n;H^{k+1}(\varOmega ^{\textrm{P}}))} \\ {}&\qquad \qquad \qquad \qquad \qquad \qquad + (\varDelta t) \Vert \partial _{tt} p^{\textrm{P}} \Vert _{L^2(0,t_n;L^2(\varOmega ^{\textrm{P}}))} \Big ) \Vert \nabla E_{p}^{A,j} \Vert _{0, K} \\&{\le C(\kappa _{\min }, \eta ) (\varDelta t)} {\Big ( c_0 + \frac{\alpha ^2}{{\lambda ^{\textrm{P}}}} \Big )^2} \Big ( h^{2(k+1)} \Vert \partial _t p^{\textrm{P}} \Vert _{L^2(0,t_n;H^{k+1}(\varOmega ^{\textrm{P}}))}^2 + (\varDelta t)^2 \Vert \partial _{tt} p^{\textrm{P}} \Vert _{L^2(0,t_n;L^2(\varOmega ^{\textrm{P}}))}^2 \Big ) \\&\qquad \qquad \qquad \qquad \qquad \qquad + \varDelta t \frac{\kappa _{\min }}{6 \eta } \sum _{j=1}^n \Vert \nabla E_{p}^{A,j} \Vert _{0, \varOmega ^{\textrm{P}}}^2. \end{aligned}$$

On the other hand, the continuity of \(b_2(\cdot , \cdot )\), the bound derived for the term \(L_5\) and using Young’s inequality implies that

$$\begin{aligned} L_7&{\le \frac{\alpha }{\lambda }\sum _{j=1}^n \bigg ( h^k (\varDelta t)^{1/2} \big (\Vert \partial _t{\varvec{u}}\Vert _{\textbf{L}^2(t_{j-1},t_j; [H^{k+1}(\varOmega )]^2)}^2 + \Vert \partial _t\psi \Vert _{L^2(t_{j-1},t_j; H^k(\varOmega ))}^2 \big )^{1/2} } \\ {}&\qquad \qquad \qquad { + (\varDelta t)^{3/2} \Vert \partial _{tt} \psi \Vert _{L^2(t_{j-1},t_j;L^2(\varOmega ))} \bigg ) \Vert E_{p}^{A,j}\Vert _{0, \varOmega ^{\textrm{P}}} } \\&{\le C(\kappa _{\min }, \eta ) } {\Big ( \frac{\alpha }{{\lambda _{\min }}} \Big )^2}\bigg ( h^{2k} (\Vert \partial _{t} \psi \Vert _{L^2(0,t_n;{H^k(\varOmega )})}^2 + \Vert \partial _{t} {\varvec{u}}\Vert _{\textbf{L}^2(0,t_n;[H^{k+1}(\varOmega )]^2)}^2)\\ {}&\qquad \qquad \qquad + (\varDelta t )^2 \Vert \partial _{tt} \psi \Vert _{L^2(0,t_n;L^2(\varOmega ))}^2 \bigg ) +(\varDelta t) \frac{\kappa _{\min }}{6 \eta } \sum _{j=1}^n \Vert \nabla E_{p}^{A,j} \Vert _{0{, \varOmega ^{\textrm{P}}}}^2. \end{aligned}$$

In turn, putting together the bounds obtained for all \(L_i\)’s, \(i=1, \dots , 7\), using Young’s inequality and Lemma 3.2 allows us to conclude that

$$\begin{aligned}&{\mu _{\min }} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,n})\Vert _0^2 + c_0 \Vert E_{p}^{A,n}\Vert _{0, \varOmega ^{\textrm{P}}}^2 + (1/{\lambda ^{\textrm{E}}}) \Vert E_{\psi }^{A,n}\Vert _{0, \varOmega ^{\textrm{E}}}^2 + (\varDelta t) \frac{\kappa _{\min }}{\eta } \sum _{j=1}^n \Vert \nabla E_{p}^{A,j} \Vert _{0, \varOmega ^{\textrm{P}}}^2 \\&\quad \lesssim {\mu _{\min }} \Vert \varvec{\varepsilon }(E_{{\varvec{u}}}^{A,0})\Vert _0^2 + (c_0 + \alpha ^2/{\lambda ^{\textrm{P}}}) \Vert E_{p}^{A,0}\Vert _{0, \varOmega ^{\textrm{P}}}^2 + (1/{\lambda ^{\textrm{E}}}) \Vert E_{\psi }^{A,0}\Vert _{0, \varOmega ^{\textrm{E}}}^2 \\&\qquad + C(\mu _{\min }) \Big (1 + \varDelta t \Big ) h^{2k} \max _{0 \le j \le n} |\varvec{b}(t_j) |_{k-1}^2 \\&\qquad + { C(\mu _{\min }, \kappa _{\min }, \eta , \alpha , \lambda _{\min }) (\varDelta t)^{1/2} }\\&\qquad { \times \biggl \{ \bigg ( \sum _{j=1}^n \Big ( (\varDelta t)^{1/2} \Vert \partial _{t} \varvec{b}^j\Vert _0 + (\varDelta t) \Vert \partial _{tt} \varvec{b}\Vert _{\textbf{L}^2(t_{j-1},t_j;[L^2(\varOmega )]^2)} } \\&\qquad { + h^k ( h\Vert \partial _{t} p^P \Vert _{L^2(t_{j-1},t_j;H^{k+1}(\varOmega ^{\textrm{P}}))} + (\Vert \partial _{t} {\varvec{u}}\Vert _{\textbf{L}^2(t_{j-1},t_j;[H^{k+1}(\varOmega )]^2)}^2 + \Vert \partial _{t} \psi \Vert _{L^2(t_{j-1},t_j;H^{k}(\varOmega ))}^2)^{1/2}) \Big )} \\&\qquad { + (\varDelta t) \Big ( \Vert \partial _{tt} {\varvec{u}}\Vert _{\textbf{L}^2(t_{j-1},t_j;[L^2(\varOmega )]^2)} + \Vert \partial _{tt} p^P \Vert _{L^2(t_{j-1},t_j;L^2(\varOmega ^{\textrm{P}}))} + \Vert \partial _{tt} \psi \Vert _{L^2(t_{j-1},t_j;L^2(\varOmega ))} \Big ) \bigg )^2}\\&\qquad { + \sum _{j=1}^n h^{2 k} \Big ( (\varDelta t)^{1/2} |\ell ^P(t_j)|_{k-1,\varOmega ^{\textrm{P}}}^2 + |\varvec{b}^j|_{k-1}^2 \Big ) } \\&\qquad { + h^{2k} \Big ( h^2 \Vert \partial _{t} p^P \Vert _{L^2(0,t_n;H^{k+1}(\varOmega ^{\textrm{P}}))}^2 + \Vert \partial _{t} {\varvec{u}}\Vert _{\textbf{L}^2(0,t_n;[H^{k+1}(\varOmega )]^2)}^2 + \Vert \partial _{t} \psi \Vert _{L^2(0,t_n;H^k(\varOmega ))}^2 \Big )} \\&\qquad { + (\varDelta t)^2 \Big ( \Vert \partial _{tt} p^P\Vert _{L^2(0,t_n;L^2(\varOmega ^{\textrm{P}}))} ^2 + \Vert \partial _{tt} {\varvec{u}}\Vert _{\textbf{L}^2(0,t_n; [L^2(\varOmega )]^2)}^2 + \Vert \partial _{tt} \psi \Vert _{L^2(0,t_n;L^2(\varOmega ))}^2 \Big ) \biggr \}. } \end{aligned}$$

And finally, the desired result (4.3) is proven after choosing \({\varvec{u}}_h^0: ={\varvec{u}}_I(0)\), \(\psi _h^0: = \varPi ^{0,k-1}\psi (0)\), \(p_h^{0, \textrm{P}}: = p_I^{\textrm{P}}(0)\) and applying triangle’s inequality together with (B.1a)–(B.1c) and (B.6).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Mora, D., Ruiz-Baier, R. et al. Numerical Solution of the Biot/Elasticity Interface Problem Using Virtual Element Methods. J Sci Comput 98, 53 (2024). https://doi.org/10.1007/s10915-023-02444-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02444-7

Keywords

Mathematics Subject Classification

Navigation