Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Numerical Investigations on Trace Finite Element Methods for the Laplace–Beltrami Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study numerically several trace finite element methods for the Laplace–Beltrami eigenvalue problem on surfaces, including the original variant, a stabilized isoparametric element and a new method with exact geometric descriptions. The new variant is proposed directly on a smooth manifold which is implicitly given by a level-set function and require high order numerical quadrature on the surface. We show that without stabilization the eigenvalues of the discrete Laplace–Beltrami operator may coincide with only part of the eigenvalues of an embedded problem, which further corresponds to the finite eigenvalues for a singular generalized algebraic eigenvalue problem. The finite eigenvalues can be efficiently solved by a rank-completing perturbation algorithm in Hochstenbach et al. (SIAM J Matrix Anal Appl 40:1022–1046, 2019). We prove the new method has optimal convergence rate without considering the quadrature errors. The impact of the geometric consistency on the eigenvalue problem is carefully studied. Numerical experiments suggest that all the methods have optimal convergence rate while the geometric consistency can improve the numerical accuracy significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

A data availability statement is mandatory for publication in this journal. Please confirm that this statement is accurate, or provide an alternative.

References

  1. Arroyo, M., DeSimone, A.: Relaxation dynamics of fluid membranes. Phys. Rev. E 79, 031915 (2009)

    MathSciNet  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. 2, pp. 641–787 (1991)

  3. Bachini, E., Farthing, M.W., Putti, M.: Intrinsic finite element method for advection-diffusion-reaction equations on surfaces. J. Comput. Phys. 424, 109827 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Beale, J.T.: Solving partial differential equations on closed surfaces with planar cartesian grids. SIAM J. Sci. Comput. 42, A1052–A1070 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Bertalmio, M., Cheng, L.T., Osher, S., Guillermo, S.: Variational problems and partial differential equations on implicit surfaces: the framework and examples in image processing and pattern formation, (2000)

  6. Bertalmio, M., Sapiro, G., Cheng, L.-T., Osher, S.: A framework for solving surface partial differential equations for computer graphics applications, CAM Report 00-43, UCLA, Mathematics Department, 3 (2000)

  7. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Bonito, A., Demlow, A., Nochetto, R. H.: Finite element methods for the Laplace–Beltrami operator. In Handbook of Numerical Analysis, pp. 1–103 Elsevier, London (2020)

  9. Bonito, A., Demlow, A., Owen, J.: A priori error estimates for finite element approximations to eigenvalues and eigenfunctions of the Laplace–Beltrami operator. SIAM J. Numer. Anal. 56, 2963–2988 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Burman, E., Hansbo, P., Larson, M.G.: A stabilized cut finite element method for partial differential equations on surfaces: the Laplace–Beltrami operator. Comput. Methods Appl. Mech. Eng. 285, 188–207 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Burman, E., Hansbo, P., Larson, M.G., Massing, A.: A cut discontinuous Galerkin method for the Laplace–Beltrami operator. IMA J. Numer. Anal. 37, 138–169 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Burman, E., Hansbo, P., Larson, M.G., Massing, A.: A stable cut finite element method for partial differential equations on surfaces: the Helmholtz–Beltrami operator. Comput. Methods Appl. Mech. Eng. 362, 112803 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Burman, E., Hansbo, P., Larson, M.G., Massing, A., Zahedi, S.: Full gradient stabilized cut finite element methods for surface partial differential equations. Comput. Methods Appl. Mech. Eng. 310, 278–296 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Buser, P.: Geometry and spectra of compact Riemann surfaces. Springer Science and Business Media, London (2010)

    MATH  Google Scholar 

  15. Chen, T., Demmel, J., Gu, M., Saad, Y., Lehoucq, R., Sorensen, D., et al.: Non-Hermitian eigenvalue problems. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, pp. 149–231. SIAM (2000)

  16. Chernyshenko, A.Y., Olshanskii, M.A.: An adaptive octree finite element method for PDEs posed on surfaces. Comput. Methods Appl. Mech. Eng. 291, 146–172 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G.: The finite element method for elliptic problems, SIAM, (2002)

  18. Craioveanu, M.-E., Puta, M., Rassias, T.: Old and New Aspects in Spectral Geometry. Springer Science and Business Media, Cham (2013)

    MATH  Google Scholar 

  19. Cui, T., Leng, W., Liu, H., Zhang, L., Zheng, W.: High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface. ACM Trans. Math. Softw. 46, 1–18 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Deckelnick, K., Dziuk, G., Elliott, C.M., Heine, C.-J.: An h-narrow band finite-element method for elliptic equations on implicit surfaces. IMA J. Numer. Anal. 30, 351–376 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Deckelnick, K., Elliott, C.M., Ranner, T.: Unfitted finite element methods using bulk meshes for surface partial differential equations. SIAM J. Numer. Anal. 52, 2137–2162 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Dedè, L., Quarteroni, A.: Isogeometric analysis for second order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 284, 807–834 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47, 805–827 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45, 421–442 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Demmel, J., Kågström, B.: The generalized Schur decomposition of an arbitrary pencil a-\(\lambda \)B: Robust software with error bounds and applications. Part I: theory and algorithms. ACM Trans. Math. Softw. (TOMS) 19, 160–174 (1993)

    MATH  Google Scholar 

  26. Dong, G., Guo, H., Shi, Z.: Discontinuous Galerkin methods for the Laplace-Beltrami operator on point cloud, arXiv preprint arXiv:2012.15433, (2020)

  27. DROPS package. http://www.igpm.rwth-aachen.de/DROPS/

  28. Du, Q., Gunzburger, M.D., Ju, L.: Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng. 192, 3933–3957 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Dziuk, G.: Finite Elements for the Beltrami Operator on Arbitrary Surfaces. Springer, Cham (1988)

    MATH  Google Scholar 

  30. Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Dziuk, G., Elliott, C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)

    MathSciNet  Google Scholar 

  32. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Elliott, C.M., Stinner, B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 226, 1271–1290 (2007)

    MathSciNet  Google Scholar 

  34. Gfrerer, M.H., Schanz, M.: A high-order fem with exact geometry description for the Laplacian on implicitly defined surfaces. Int. J. Numer. Meth. Eng. 114, 1163–1178 (2018)

    MathSciNet  Google Scholar 

  35. Glowinski, R., Sorensen, D.C.: Computing the Eigenvalues of the Laplace–Beltrami Operator on the Surface of a Torus: A Numerical Approach, in Partial Differential Equations, pp. 225–232. Springer, Cham (2008)

    MATH  Google Scholar 

  36. Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110, 1–22 (1992)

    MathSciNet  MATH  Google Scholar 

  37. Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Am. Math. Soc. 27, 134–138 (1992)

    MathSciNet  MATH  Google Scholar 

  38. Grande, J.: Eulerian finite element methods for parabolic equations on moving surfaces. SIAM J. Sci. Comput. 36, B248–B271 (2014)

    MathSciNet  Google Scholar 

  39. Grande, J., Lehrenfeld, C., Reusken, A.: Analysis of a high-order trace finite element method for PDEs on level set surfaces. SIAM J. Numer. Anal. 56, 228–255 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Grande, J., Reusken, A.: A higher order finite element method for partial differential equations on surfaces. SIAM J. Numer. Anal. 54, 388–414 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Groß, S., Reusken, A.: Numerical Methods for Two-phase Incompressible Flows. Springer, Berlin (2011)

    MATH  Google Scholar 

  42. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Hebey, E.: Sobolev Spaces on Riemannian Manifolds, vol. 1635. Springer Science and Business Media, Berlin (1996)

    MATH  Google Scholar 

  44. Hochstenbach, M.E., Mehl, C., Plestenjak, B.: Solving singular generalized eigenvalue problems by a rank-completing perturbation. SIAM J. Matrix Anal. Appl. 40, 1022–1046 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Kovács, B.: High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal. 38, 430–459 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Larson, M.G., Zahedi, S.: Stabilization of high order cut finite element methods on surfaces. IMA J. Numer. Anal. 40, 1702–1745 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng. 300, 716–733 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Lehrenfeld, C., Olshanskii, M.A., Xu, X.: A stabilized trace finite element method for partial differential equations on evolving surfaces. SIAM J. Numer. Anal. 56, 1643–1672 (2018)

    MathSciNet  MATH  Google Scholar 

  49. Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput. 39, A2129–A2151 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Leung, S., Lowengrub, J., Zhao, H.: A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J. Comput. Phys. 230, 2540–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Li, Z., Shi, Z.: A convergent point integral method for isotropic elliptic equations on a point cloud. Multiscale Model. Simul. 14, 874–905 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35, A1461–A1486 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Macdonald, C.B., Brandman, J., Ruuth, S.J.: Solving eigenvalue problems on curved surfaces using the closest point method. J. Comput. Phys. 230, 7944–7956 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2010)

    MathSciNet  MATH  Google Scholar 

  55. McKean, H.P., Jr., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967)

    MathSciNet  MATH  Google Scholar 

  56. Milliken, W., Stone, H., Leal, L.: The effect of surfactant on transient motion of Newtonian drops. Phys. Fluids A 5, 69–79 (1993)

    MATH  Google Scholar 

  57. Muhič, A., Plestenjak, B.: On the singular two-parameter eigenvalue problem. Electron. J. Linear Algebra 18, 420–437 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Meth. Eng. 96, 512–528 (2013)

    MathSciNet  MATH  Google Scholar 

  59. MultiParEig package. www.mathworks.com/matlabcentral/fileexchange/47844-multipareig

  60. Nasikun, A., Brandt, C., Hildebrandt, K.: Fast Approximation of Laplace–Beltrami Eigenproblems. In Computer Graphics Forum, vol. 37, pp. 121–134. Wiley Online Library, London (2018)

    Google Scholar 

  61. NGSXFEM package. https://github.com/ngsxfem/ngsxfem

  62. Novak, I.L., Gao, F., Choi, Y.-S., Resasco, D., Schaff, J.C., Slepchenko, B.: Diffusion on a curved surface coupled to diffusion in the volume: application to cell biology. J. Comput. Phys. 229, 6585–6612 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Olshanskii, M., Reusken, A., Zhiliakov, A.: Inf-sup stability of the trace P2–P1 Taylor-Hood elements for surface PDEs. Math. Comput. 90, 1527–1555 (2021)

    MATH  Google Scholar 

  64. Olshanskii, M., Xu, X., Yushutin, V.: A finite element method for Allen–Cahn equation on deforming surface. Comput. Math. Appl. 90, 148–158 (2021)

    MathSciNet  MATH  Google Scholar 

  65. Olshanskii, M.A., Reusken, A.: A finite element method for surface PDEs: matrix properties. Numer. Math. 114, 491 (2010)

    MathSciNet  MATH  Google Scholar 

  66. Olshanskii, M.A., Reusken, A.: Trace finite element methods for PDEs on surfaces. In: Geometrically unfitted finite element methods and applications, pp. 211–258. Springer, Cham (2017)

    MATH  Google Scholar 

  67. Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47, 3339–3358 (2009)

    MathSciNet  MATH  Google Scholar 

  68. Olshanskii, M.A., Reusken, A., Xu, X.: An Eulerian space-time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52, 1354–1377 (2014)

    MathSciNet  MATH  Google Scholar 

  69. PHG package. http://lsec.cc.ac.cn/phg/

  70. Reusken, A.: Analysis of trace finite element methods for surface partial differential equations. IMA J. Numer. Anal. 35, 1568–1590 (2015)

    MathSciNet  MATH  Google Scholar 

  71. Reusken, A.: Analysis of finite element methods for surface vector-Laplace eigenproblems. Math. Comput. 91, 1587–1623 (2022)

    MathSciNet  MATH  Google Scholar 

  72. Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace–Beltrami spectra as ‘shape-DNA’ of surfaces and solids. Comput. Aided Des. 38, 342–366 (2006)

    Google Scholar 

  73. Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 1943–1961 (2008)

    MathSciNet  MATH  Google Scholar 

  74. Saye, R.: High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput. 37, A993–A1019 (2015)

    MathSciNet  MATH  Google Scholar 

  75. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569 (1997)

    Google Scholar 

  76. Stone, H.: A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111–112 (1990)

    Google Scholar 

  77. Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. Chapman and Hall/CRC, Lonodn (2016)

    Google Scholar 

  78. Van Dooren, P.: The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra Appl. 27, 103–140 (1979)

    MathSciNet  MATH  Google Scholar 

  79. Weyl, H.: Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)

    MathSciNet  MATH  Google Scholar 

  80. Wilkinson, J.H.: Kronecker’s canonical form and the QZ algorithm. Linear Algebra Appl. 28, 285–303 (1979)

    MathSciNet  MATH  Google Scholar 

  81. Wu, H., Xiao, Y.: An unfitted \( hp \)-interface penalty finite element method for elliptic interface problems. J. Comput. Math. 37, 316–339 (2019)

    MathSciNet  MATH  Google Scholar 

  82. Xiao, X., Feng, X., Li, Z.: The local tangential lifting method for moving interface problems on surfaces with applications. J. Comput. Phys. 431, 110146 (2021)

    MathSciNet  MATH  Google Scholar 

  83. Xu, G.: Discrete Laplace–Beltrami operators and their convergence. Computer aided geometric design 21, 767–784 (2004)

    MathSciNet  MATH  Google Scholar 

  84. Xu, J.-J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573–594 (2003)

    MathSciNet  MATH  Google Scholar 

  85. Yushutin, V., Quaini, A., Olshanskii, M.: Numerical modeling of phase separation on dynamic surfaces. J. Comput. Phys. 407, 109126 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for very valuable comments that help us to improve the manuscript a lot. In the implementation of the methods discussed in the paper, we have used several software packages, including DROPS [27], PHG [69], NGSXFEM [61] and MultiParEig [59]. Our program can be found in the website of https://github.com/lusongno1/surface_PDEs.

Funding

A funding declaration is mandatory for publication in this journal. Please confirm that this declaration is accurate, or provide an alternative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Xu.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by NSFC Grant (No. 11971469).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Xu, X. Numerical Investigations on Trace Finite Element Methods for the Laplace–Beltrami Eigenvalue Problem. J Sci Comput 97, 12 (2023). https://doi.org/10.1007/s10915-023-02326-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02326-y

Keywords

Navigation