Abstract
In this paper, we study numerically several trace finite element methods for the Laplace–Beltrami eigenvalue problem on surfaces, including the original variant, a stabilized isoparametric element and a new method with exact geometric descriptions. The new variant is proposed directly on a smooth manifold which is implicitly given by a level-set function and require high order numerical quadrature on the surface. We show that without stabilization the eigenvalues of the discrete Laplace–Beltrami operator may coincide with only part of the eigenvalues of an embedded problem, which further corresponds to the finite eigenvalues for a singular generalized algebraic eigenvalue problem. The finite eigenvalues can be efficiently solved by a rank-completing perturbation algorithm in Hochstenbach et al. (SIAM J Matrix Anal Appl 40:1022–1046, 2019). We prove the new method has optimal convergence rate without considering the quadrature errors. The impact of the geometric consistency on the eigenvalue problem is carefully studied. Numerical experiments suggest that all the methods have optimal convergence rate while the geometric consistency can improve the numerical accuracy significantly.
Similar content being viewed by others
Data Availability
A data availability statement is mandatory for publication in this journal. Please confirm that this statement is accurate, or provide an alternative.
References
Arroyo, M., DeSimone, A.: Relaxation dynamics of fluid membranes. Phys. Rev. E 79, 031915 (2009)
Babuška, I., Osborn, J.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. 2, pp. 641–787 (1991)
Bachini, E., Farthing, M.W., Putti, M.: Intrinsic finite element method for advection-diffusion-reaction equations on surfaces. J. Comput. Phys. 424, 109827 (2021)
Beale, J.T.: Solving partial differential equations on closed surfaces with planar cartesian grids. SIAM J. Sci. Comput. 42, A1052–A1070 (2020)
Bertalmio, M., Cheng, L.T., Osher, S., Guillermo, S.: Variational problems and partial differential equations on implicit surfaces: the framework and examples in image processing and pattern formation, (2000)
Bertalmio, M., Sapiro, G., Cheng, L.-T., Osher, S.: A framework for solving surface partial differential equations for computer graphics applications, CAM Report 00-43, UCLA, Mathematics Department, 3 (2000)
Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)
Bonito, A., Demlow, A., Nochetto, R. H.: Finite element methods for the Laplace–Beltrami operator. In Handbook of Numerical Analysis, pp. 1–103 Elsevier, London (2020)
Bonito, A., Demlow, A., Owen, J.: A priori error estimates for finite element approximations to eigenvalues and eigenfunctions of the Laplace–Beltrami operator. SIAM J. Numer. Anal. 56, 2963–2988 (2018)
Burman, E., Hansbo, P., Larson, M.G.: A stabilized cut finite element method for partial differential equations on surfaces: the Laplace–Beltrami operator. Comput. Methods Appl. Mech. Eng. 285, 188–207 (2015)
Burman, E., Hansbo, P., Larson, M.G., Massing, A.: A cut discontinuous Galerkin method for the Laplace–Beltrami operator. IMA J. Numer. Anal. 37, 138–169 (2017)
Burman, E., Hansbo, P., Larson, M.G., Massing, A.: A stable cut finite element method for partial differential equations on surfaces: the Helmholtz–Beltrami operator. Comput. Methods Appl. Mech. Eng. 362, 112803 (2020)
Burman, E., Hansbo, P., Larson, M.G., Massing, A., Zahedi, S.: Full gradient stabilized cut finite element methods for surface partial differential equations. Comput. Methods Appl. Mech. Eng. 310, 278–296 (2016)
Buser, P.: Geometry and spectra of compact Riemann surfaces. Springer Science and Business Media, London (2010)
Chen, T., Demmel, J., Gu, M., Saad, Y., Lehoucq, R., Sorensen, D., et al.: Non-Hermitian eigenvalue problems. In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, pp. 149–231. SIAM (2000)
Chernyshenko, A.Y., Olshanskii, M.A.: An adaptive octree finite element method for PDEs posed on surfaces. Comput. Methods Appl. Mech. Eng. 291, 146–172 (2015)
Ciarlet, P.G.: The finite element method for elliptic problems, SIAM, (2002)
Craioveanu, M.-E., Puta, M., Rassias, T.: Old and New Aspects in Spectral Geometry. Springer Science and Business Media, Cham (2013)
Cui, T., Leng, W., Liu, H., Zhang, L., Zheng, W.: High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface. ACM Trans. Math. Softw. 46, 1–18 (2020)
Deckelnick, K., Dziuk, G., Elliott, C.M., Heine, C.-J.: An h-narrow band finite-element method for elliptic equations on implicit surfaces. IMA J. Numer. Anal. 30, 351–376 (2010)
Deckelnick, K., Elliott, C.M., Ranner, T.: Unfitted finite element methods using bulk meshes for surface partial differential equations. SIAM J. Numer. Anal. 52, 2137–2162 (2014)
Dedè, L., Quarteroni, A.: Isogeometric analysis for second order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 284, 807–834 (2015)
Demlow, A.: Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal. 47, 805–827 (2009)
Demlow, A., Dziuk, G.: An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45, 421–442 (2007)
Demmel, J., Kågström, B.: The generalized Schur decomposition of an arbitrary pencil a-\(\lambda \)B: Robust software with error bounds and applications. Part I: theory and algorithms. ACM Trans. Math. Softw. (TOMS) 19, 160–174 (1993)
Dong, G., Guo, H., Shi, Z.: Discontinuous Galerkin methods for the Laplace-Beltrami operator on point cloud, arXiv preprint arXiv:2012.15433, (2020)
DROPS package. http://www.igpm.rwth-aachen.de/DROPS/
Du, Q., Gunzburger, M.D., Ju, L.: Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere. Comput. Methods Appl. Mech. Eng. 192, 3933–3957 (2003)
Dziuk, G.: Finite Elements for the Beltrami Operator on Arbitrary Surfaces. Springer, Cham (1988)
Dziuk, G., Elliott, C.M.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27, 262–292 (2007)
Dziuk, G., Elliott, C.M.: Surface finite elements for parabolic equations. J. Comput. Math. 25, 385–407 (2007)
Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numer. 22, 289 (2013)
Elliott, C.M., Stinner, B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 226, 1271–1290 (2007)
Gfrerer, M.H., Schanz, M.: A high-order fem with exact geometry description for the Laplacian on implicitly defined surfaces. Int. J. Numer. Meth. Eng. 114, 1163–1178 (2018)
Glowinski, R., Sorensen, D.C.: Computing the Eigenvalues of the Laplace–Beltrami Operator on the Surface of a Torus: A Numerical Approach, in Partial Differential Equations, pp. 225–232. Springer, Cham (2008)
Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110, 1–22 (1992)
Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Am. Math. Soc. 27, 134–138 (1992)
Grande, J.: Eulerian finite element methods for parabolic equations on moving surfaces. SIAM J. Sci. Comput. 36, B248–B271 (2014)
Grande, J., Lehrenfeld, C., Reusken, A.: Analysis of a high-order trace finite element method for PDEs on level set surfaces. SIAM J. Numer. Anal. 56, 228–255 (2018)
Grande, J., Reusken, A.: A higher order finite element method for partial differential equations on surfaces. SIAM J. Numer. Anal. 54, 388–414 (2016)
Groß, S., Reusken, A.: Numerical Methods for Two-phase Incompressible Flows. Springer, Berlin (2011)
Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)
Hebey, E.: Sobolev Spaces on Riemannian Manifolds, vol. 1635. Springer Science and Business Media, Berlin (1996)
Hochstenbach, M.E., Mehl, C., Plestenjak, B.: Solving singular generalized eigenvalue problems by a rank-completing perturbation. SIAM J. Matrix Anal. Appl. 40, 1022–1046 (2019)
Kovács, B.: High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal. 38, 430–459 (2018)
Larson, M.G., Zahedi, S.: Stabilization of high order cut finite element methods on surfaces. IMA J. Numer. Anal. 40, 1702–1745 (2020)
Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng. 300, 716–733 (2016)
Lehrenfeld, C., Olshanskii, M.A., Xu, X.: A stabilized trace finite element method for partial differential equations on evolving surfaces. SIAM J. Numer. Anal. 56, 1643–1672 (2018)
Lehto, E., Shankar, V., Wright, G.B.: A radial basis function (RBF) compact finite difference (FD) scheme for reaction-diffusion equations on surfaces. SIAM J. Sci. Comput. 39, A2129–A2151 (2017)
Leung, S., Lowengrub, J., Zhao, H.: A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion. J. Comput. Phys. 230, 2540–2561 (2011)
Li, Z., Shi, Z.: A convergent point integral method for isotropic elliptic equations on a point cloud. Multiscale Model. Simul. 14, 874–905 (2016)
Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35, A1461–A1486 (2013)
Macdonald, C.B., Brandman, J., Ruuth, S.J.: Solving eigenvalue problems on curved surfaces using the closest point method. J. Comput. Phys. 230, 7944–7956 (2011)
Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput. 31, 4330–4350 (2010)
McKean, H.P., Jr., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1, 43–69 (1967)
Milliken, W., Stone, H., Leal, L.: The effect of surfactant on transient motion of Newtonian drops. Phys. Fluids A 5, 69–79 (1993)
Muhič, A., Plestenjak, B.: On the singular two-parameter eigenvalue problem. Electron. J. Linear Algebra 18, 420–437 (2009)
Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Meth. Eng. 96, 512–528 (2013)
MultiParEig package. www.mathworks.com/matlabcentral/fileexchange/47844-multipareig
Nasikun, A., Brandt, C., Hildebrandt, K.: Fast Approximation of Laplace–Beltrami Eigenproblems. In Computer Graphics Forum, vol. 37, pp. 121–134. Wiley Online Library, London (2018)
NGSXFEM package. https://github.com/ngsxfem/ngsxfem
Novak, I.L., Gao, F., Choi, Y.-S., Resasco, D., Schaff, J.C., Slepchenko, B.: Diffusion on a curved surface coupled to diffusion in the volume: application to cell biology. J. Comput. Phys. 229, 6585–6612 (2010)
Olshanskii, M., Reusken, A., Zhiliakov, A.: Inf-sup stability of the trace P2–P1 Taylor-Hood elements for surface PDEs. Math. Comput. 90, 1527–1555 (2021)
Olshanskii, M., Xu, X., Yushutin, V.: A finite element method for Allen–Cahn equation on deforming surface. Comput. Math. Appl. 90, 148–158 (2021)
Olshanskii, M.A., Reusken, A.: A finite element method for surface PDEs: matrix properties. Numer. Math. 114, 491 (2010)
Olshanskii, M.A., Reusken, A.: Trace finite element methods for PDEs on surfaces. In: Geometrically unfitted finite element methods and applications, pp. 211–258. Springer, Cham (2017)
Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47, 3339–3358 (2009)
Olshanskii, M.A., Reusken, A., Xu, X.: An Eulerian space-time finite element method for diffusion problems on evolving surfaces. SIAM J. Numer. Anal. 52, 1354–1377 (2014)
PHG package. http://lsec.cc.ac.cn/phg/
Reusken, A.: Analysis of trace finite element methods for surface partial differential equations. IMA J. Numer. Anal. 35, 1568–1590 (2015)
Reusken, A.: Analysis of finite element methods for surface vector-Laplace eigenproblems. Math. Comput. 91, 1587–1623 (2022)
Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace–Beltrami spectra as ‘shape-DNA’ of surfaces and solids. Comput. Aided Des. 38, 342–366 (2006)
Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 1943–1961 (2008)
Saye, R.: High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput. 37, A993–A1019 (2015)
Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569 (1997)
Stone, H.: A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys. Fluids A 2, 111–112 (1990)
Sun, J., Zhou, A.: Finite Element Methods for Eigenvalue Problems. Chapman and Hall/CRC, Lonodn (2016)
Van Dooren, P.: The computation of Kronecker’s canonical form of a singular pencil. Linear Algebra Appl. 27, 103–140 (1979)
Weyl, H.: Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). Math. Ann. 71, 441–479 (1912)
Wilkinson, J.H.: Kronecker’s canonical form and the QZ algorithm. Linear Algebra Appl. 28, 285–303 (1979)
Wu, H., Xiao, Y.: An unfitted \( hp \)-interface penalty finite element method for elliptic interface problems. J. Comput. Math. 37, 316–339 (2019)
Xiao, X., Feng, X., Li, Z.: The local tangential lifting method for moving interface problems on surfaces with applications. J. Comput. Phys. 431, 110146 (2021)
Xu, G.: Discrete Laplace–Beltrami operators and their convergence. Computer aided geometric design 21, 767–784 (2004)
Xu, J.-J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573–594 (2003)
Yushutin, V., Quaini, A., Olshanskii, M.: Numerical modeling of phase separation on dynamic surfaces. J. Comput. Phys. 407, 109126 (2020)
Acknowledgements
We thank the anonymous referees for very valuable comments that help us to improve the manuscript a lot. In the implementation of the methods discussed in the paper, we have used several software packages, including DROPS [27], PHG [69], NGSXFEM [61] and MultiParEig [59]. Our program can be found in the website of https://github.com/lusongno1/surface_PDEs.
Funding
A funding declaration is mandatory for publication in this journal. Please confirm that this declaration is accurate, or provide an alternative.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare they have no financial interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is partially supported by NSFC Grant (No. 11971469).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lu, S., Xu, X. Numerical Investigations on Trace Finite Element Methods for the Laplace–Beltrami Eigenvalue Problem. J Sci Comput 97, 12 (2023). https://doi.org/10.1007/s10915-023-02326-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-023-02326-y