Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Implicit Scheme for American Put Options

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an implicit scheme is proposed to solve a parabolic variational inequality arising from the American put options. The discretization leads to a class of discrete elliptic variational inequalities. Well-posedness, including existence, uniqueness, comparison principle, and stability of the discrete elliptic variational inequality is established. A simple and efficient algorithm to solve the implicit discretized variational inequality is discovered. The novelty here is an explicit formula for the optimal exercise boundary. An improved algorithm is also presented to eliminate the singularity near the time to expiry. Numerical examples are carried out to show the accuracy and efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study.

References

  1. Allegretto, W., Lin, Y., Yang, H.: Finite element error estimates for a nonlocal problem in American option valuation. SIAM J. Numer. Anal. 39(3), 834–857 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broadie, M., Detemple, J.: American option valuation: new bounds, approximations, and a comparison of existing methods. Rev. Financ. Stud. 9(4), 1211–1250 (1996)

    Article  Google Scholar 

  3. Broadie, M., Glasserman, P.: Pricing american-style securities using simulation. J. Econ. Dyn. Control 21(8–9), 1323–1352 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carr, P.: Randomization and the American put. Rev. Financ. Stud. 11(3), 597–626 (1998)

    Article  MATH  Google Scholar 

  5. Carr, P., Jarrow, R., Myneni, R.: Alternative characterizations of American put options. Math. Financ. 2(2), 87–106 (1992)

    Article  MATH  Google Scholar 

  6. Cen, Z., Chen, W.: A HODIE finite difference scheme for pricing American options. Adv. Difference Equ. 67, 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Cen, Z., Le, A.: A robust finite difference scheme for pricing American put options with singularity-separating method. Numer. Algorithms 53(4), 497–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, F., Shen, J.: Stability and error analysis of operator splitting methods for American options under the Black-Scholes model. J. Sci. Comput. 82(2), 1–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Chadam, J.: A mathematical analysis of the optimal exercise boundary for American put options. SIAM J. Math. Anal. 38(5), 1613–1641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Hu, B., Liang, J., Zhang, Y.: Convergence rate of free boundary of numerical scheme for American option. Discrete Contin. Dyn. Syst. Ser. B 21(5), 1435–1444 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, S.L., Shih, P.T.: Static hedging and pricing American options. J. Bank Financ. 33(11), 2140–2149 (2009)

    Article  Google Scholar 

  12. Dai, M., Kwok, Y.K., You, H.: Intensity-based framework and penalty formulation of optimal stopping problems. J. Econ. Dyn. Control 31(12), 3860–3880 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Detemple, J.: American-style derivatives: valuation and computation. CRC Press, USA (2005)

    Book  MATH  Google Scholar 

  14. Detemple, J., Feng, S., Tian, W.: The valuation of American call options on the minimum of two dividend-paying assets. Ann. Appl. Probab. 13(3), 953–983 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Detemple, J., Tian, W.: The valuation of American options for a class of diffusion processes. Manage. Sci. 48(7), 917–937 (2002)

    Article  MATH  Google Scholar 

  16. Friedman, A.: Variational Principles and Free-boundary Problems. A Wiley-Interscience Publication. John Wiley & Sons Inc, New York (1982)

    MATH  Google Scholar 

  17. Hu, B., Liang, J., Jiang, L.: Optimal convergence rate of the explicit finite difference scheme for American option valuation. J. Comput. Appl. Math. 230(2), 583–599 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, J., Subrahmanyam, M., Yu, G.: Pricing and hedging American options: a recursive integration method. Rev. Financ. Stud. 9(1), 277–300 (1996)

    Article  Google Scholar 

  19. Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17(7), 809–814 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, L.: Mathematical Modeling and Methods of Option Pricing. World Scientific Publishing Co. Inc, River Edge, NJ (2005)

    Book  MATH  Google Scholar 

  21. Ju, N.: Pricing an American option by approximating its early exercise boundary as a multipiece exponential function. Rev. Financ. Stud. 11(3), 627–646 (1998)

    Article  Google Scholar 

  22. Khaliq, A., Voss, D., Kazmi, S.: A linear implicit predictor-correcto scheme for pricing American options using a penalty method approach. J. Bank. Financ. 30(2), 489–502 (2006)

    Article  Google Scholar 

  23. Kim, I.J.: The analytic valuation of American options. Rev. Financ. Stud. 3(4), 547–572 (1990)

    Article  Google Scholar 

  24. Kwok, Y.K.: Mathematical Models of Financial Derivatives, 2nd edn. Springer Finance. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Li, C., Ye, Y.: Pricing and exercising American options: an asymptotic expansion approach. J. Econ. Dyn. Control 107, 10372932 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Longstaff, F.A., Schwartz, E.S.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14(1), 113–147 (2001)

    Article  MATH  Google Scholar 

  27. Ma, J., Cui, Z., Li, W.: Laplace bounds approximation for American options. Probab. Engrg. Inform. Sci. 36(2), 514–547 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, J., Yang, W., Cui, Z.: CTMC integral equation method for American options under stochastic local volatility models. J. Econ. Dyn. Control 128, 10414521 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wong, H.Y., Zhao, J.: Valuing American options under the CEV model by Laplace-Carson transforms. Oper. Res. Lett. 38(5), 474–481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, C., Qian, X., Jiang, L.: Numerical analysis on binomial tree methods for a jump-diffusion model. J. Comput. Appl. Math. 156(1), 23–45 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Z., Ma, J., Sun, H.W.: Fast Laplace transform methods for free-boundary problems of fractional diffusion equations. J. Sci. Comput. 74(1), 49–69 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, Y.L., Chen, B.M., Ren, H., Xu, H.: Application of the singularity-separating method to American exotic option pricing. Adv. Comput. Math. 19, 147–158 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The third author was supported in part by the National Natural Science Foundation of China through Grant [12071373] and the last author was supported in part by National Natural Science Foundation of China (Grant No. 12101509) and was supported in part by the Fundamental Research Funds for the Central Universities (JBK2304085). The authors are very grateful to the anonymous referees for many constructive comments and suggestions which have improved this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingtang Ma or Jinye Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Lu, Z., Ma, J. et al. An Implicit Scheme for American Put Options. J Sci Comput 97, 42 (2023). https://doi.org/10.1007/s10915-023-02356-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02356-6

Keywords

Mathematics Subject Classification

Navigation