Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Efficient Chorin–Temam Projection Proper Orthogonal Decomposition Based Reduced-Order Model for Nonstationary Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient proper orthogonal decomposition based reduced-order model (POD-ROM) for nonstationary Stokes equations, which combines the classical projection method with POD technique. This new scheme mainly owns two advantages: the first one is low computational costs since the classical projection method decouples the reduced-order velocity variable and reduced-order pressure variable, and POD technique further improves the computational efficiency; the second advantage consists of circumventing the verification of classical LBB/inf-sup condition for mixed reduced spaces with the help of pressure stabilized Petrov–Galerkin (PSPG)-type projection method, where the pressure stabilization term is inherent which allows the use of non inf-sup stable elements without adding extra stabilization terms. We analyze the proposed projection POD-ROM’s stability and convergence, and numerical experiments validate those theoretical results and also the high-efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Ali, S., Ballarin, F., Rozza, G.: Stabilized reduced basis methods for parametrized steady Stokes and Navier–Stokes equations. Comput. Math. Appl. 80(11), 2399–2416 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azaïez, M., Chacón Rebollo, T., Rubino, S.: A cure for instabilities due to advection-dominance in POD solution to advection–diffusion–reaction equations. J. Comput. Phys. 425, Paper No. 109916, 27 (2021)

  3. Baiges, J., Codina, R., Idelsohn, S.: Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 72(12), 1219–1243 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballarin, F., Manzoni, A., Quarteroni, A., Rozza, G.: Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations. Int. J. Numer. Methods Eng. 102(5), 1136–1161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn., vol. 15 of Texts in Applied Mathematics. Springer, New York (2008)

  6. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Efficient Solutions of Elliptic Systems (Kiel, 1984), vol. 10 of Notes Numer. Fluid Mech. Friedr. Vieweg, Braunschweig, pp. 11–19 (1984)

  7. Burman, E., Fernández, M.A.: Analysis of the PSPG method for the transient Stokes’ problem. Comput. Methods Appl. Mech. Eng. 200(41–44), 2882–2890 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caiazzo, A., Iliescu, T., John, V., Schyschlowa, S.: A numerical investigation of velocity-pressure reduced order models for incompressible flows. J. Comput. Phys. 259, 598–616 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlberg, K., Farhat, C., Cortial, J., Amsallem, D.: The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242, 623–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaturantabut, S., Sorensen, D.C.: A state space error estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal. 50(1), 46–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, L.: iFEM: an innovative finite element methods package in matlab. University of Maryland, Preprint (2008)

  13. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chorin, A.J.: On the convergence of discrete approximations to the Navier–Stokes equations. Math. Comput. 23, 341–353 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ciarlet, P.G.: The finite element method for elliptic problems, vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002)

  16. de Frutos, J., García-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Frutos, J., García-Archilla, B., Novo, J.: Error analysis of projection methods for non inf-sup stable mixed finite elements: the Navier–Stokes equations. J. Sci. Comput. 74(1), 426–455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Frutos, J., García-Archilla, B., Novo, J.: Error analysis of projection methods for non inf-sup stable mixed finite elements. The transient Stokes problem. Appl. Math. Comput. 322, 154–173 (2018)

  19. DeCaria, V., Iliescu, T., Layton, W., McLaughlin, M., Schneier, M.: An artificial compression reduced order model. SIAM J. Numer. Anal. 58(1), 565–589 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, G., Wang, Z.: POD-(H)DG method for incompressible flow simulations. J. Sci. Comput. 852, Paper No. 24, 20 (2020)

  21. Girault, V., Raviart, P.-A.: Finite element methods for Navier–Stokes equations—Theory and algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

  22. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195(44–47), 6011–6045 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guermond, J.-L., Quartapelle, L.: On the approximation of the unsteady Navier–Stokes equations by finite element projection methods. Numer. Math. 80(2), 207–238 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. M2AN Math. Model. Numer. Anal. 42(2), 277–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iliescu, T., Wang, Z.: Are the snapshot difference quotients needed in the proper orthogonal decomposition? SIAM J. Sci. Comput. 36(3), A1221–A1250 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. John, V., Novo, J.: Analysis of the pressure stabilized Petrov–Galerkin method for the evolutionary Stokes equations avoiding time step restrictions. SIAM J. Numer. Anal. 53(2), 1005–1031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kean, K., Schneier, M.: Error analysis of supremizer pressure recovery for POD based reduced-order models of the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 58(4), 2235–2264 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Koc, B., Rubino, S., Schneier, M., Singler, J., Iliescu, T.: On optimal pointwise in time error bounds and difference quotients for the proper orthogonal decomposition. SIAM J. Numer. Anal. 59(4), 2163–2196 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90(1), 117–148 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Luo, Z., Chen, G.: Proper Orthogonal Decomposition Methods for Partial Differential Equations. Mathematics in Science and Engineering. Elsevier/Academic Press, London (2019)

    Google Scholar 

  34. Luo, Z., Chen, J., Navon, I.M., Yang, X.: Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations. SIAM J. Numer. Anal. 47(1), 1–19 (2008/09)

  35. Luo, Z.-D., Ou, Q.-L., Xie, Z.-H.: Reduced finite difference scheme and error estimates based on POD method for non-stationary Stokes equation. Appl. Math. Mech. (English Ed.) 32(7), 847–858 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Noack, B.R., Papas, P., Monkewitz, P.A.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Novo, J., Rubino, S.: Error analysis of proper orthogonal decomposition stabilized methods for incompressible flows. SIAM J. Numer. Anal. 59(1), 334–369 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rannacher, R.: On Chorin’s projection method for the incompressible Navier–Stokes equations. In: The Navier–Stokes equations II—theory and numerical methods (Oberwolfach, 1991): vol. 1530 of Lecture Notes in Math, pp. 167–183. Springer, Berlin (1992)

  39. Rozza, G., Huynh, D.B.P., Manzoni, A.: Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125(1), 115–152 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rubino, S.: Numerical analysis of a projection-based stabilized POD-ROM for incompressible flows. SIAM J. Numer. Anal. 58(4), 2019–2058 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: first-order schemes. SIAM J. Numer. Anal. 29(1), 57–77 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62(1), 49–73 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  43. Singler, J.R.: New POD error expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. SIAM J. Numer. Anal. 52(2), 852–876 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Stabile, G., Ballarin, F., Zuccarino, G., Rozza, G.: A reduced order variational multiscale approach for turbulent flows. Adv. Comput. Math. 45(5–6), 2349–2368 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stabile, G., Rozza, G.: Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations. Comput. Fluids 173, 273–284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Stabile, G., Zancanaro, M., Rozza, G.: Efficient geometrical parametrization for finite-volume-based reduced order methods. Int. J. Numer. Methods Eng. 121(12), 2655–2682 (2020)

    Article  MathSciNet  Google Scholar 

  47. Temam, R.: Une méthode d’approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 96, 115–152 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  48. Veroy, K., Prud’homme, C., Rovas, D., Patera, A.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of 16th AIAA Computational Fluid Dynamics Conference (2013)

  49. Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, Faculty of Mathematics and Statistics, University of Konstanz (2011)

  50. Willcox, K.: Unsteady flow sensing and estimation via the Gappy proper orthogonal decomposition. Comput. Fluids 35(2), 208–226 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their constructive comments and suggestions which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minfu Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xi Li and Minfu Feng: The work of this author was supported by the National Natural Science Foundation of China (Grant No. 11971337). Yan Luo: The work of this author was supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11901078) and by the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2020J021).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, Y. & Feng, M. An Efficient Chorin–Temam Projection Proper Orthogonal Decomposition Based Reduced-Order Model for Nonstationary Stokes Equations. J Sci Comput 93, 64 (2022). https://doi.org/10.1007/s10915-022-02032-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02032-1

Keywords

Navigation