Abstract
The discretization of Gross-Pitaevskii equations (GPE) leads to a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). We use two Newton-based methods to compute the positive ground state of GPE. The first method comes from the Newton-Noda iteration for saturable nonlinear Schrödinger equations proposed by Ching-Sung Liu, which can be transferred to GPE naturally. The second method combines the idea of the root-finding methods and the idea of Newton method, in which, each subproblem involving block tridiagonal linear systems can be solved easily. We give an explicit convergence and computational complexity analysis for it. Numerical experiments are provided to support the theoretical results.
Similar content being viewed by others
Data Availability
All data generated or analysed during this study are included in this article.
References
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press (2009)
Antoine, X., Duboscq, R.: Gpelab, a matlab toolbox to solve gross-pitaevskii equations i: Computation of stationary solutions. Comput. Phys. Commun. 185(11), 2969–2991 (2014). https://doi.org/10.1016/j.cpc.2014.06.026
Antoine, X., Duboscq, R.: Modeling and computation of bose-einstein condensates: stationary states, nucleation, dynamics, stochasticity. In: Nonlinear optical and atomic systems, pp. 49–145. Springer (2015)
Antoine, X., Levitt, A., Tang, Q.: Efficient spectral computation of the stationary states of rotating bose-einstein condensates by preconditioned nonlinear conjugate gradient methods. J. Comput. Phys. 343, 92–109 (2017). https://doi.org/10.1016/j.jcp.2017.04.040
Antoine, X., Tang, Q., Zhang, Y.: A preconditioned conjugated gradient method for computing ground states of rotating dipolar bose-einstein condensates via kernel truncation method for dipole-dipole interaction evaluation. Commun. Comput. Phys. 24(4), 966–988 (2018)
Bao, W., Cai, Y.: Mathematical theory and numerical methods for bose-einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013). https://doi.org/10.3934/krm.2013.6.1
Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the gross-pitaevskii equation with angular momentum rotation. Math. Comp. 82(281), 99–128 (2013). https://doi.org/10.1090/S0025-5718-2012-02617-2
Bao, W., Cai, Y., Wang, H.: Efficient numerical methods for computing ground states and dynamics of dipolar bose-einstein condensates. J. Comput. Phys. 229(20), 7874–7892 (2010). https://doi.org/10.1016/j.jcp.2010.07.001
Bao, W., Chern, I.L., Lim, F.Y.: Efficient and spectrally accurate numerical methods for computing ground and first excited states in bose-einstein condensates. J. Comput. Phys. 219(2), 836–854 (2006). https://doi.org/10.1016/j.jcp.2006.04.019
Bao, W., Du, Q.: Computing the ground state solution of bose-einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25(5), 1674–1697 (2004). https://doi.org/10.1137/S1064827503422956
Bao, W., Tang, W.: Ground-state solution of bose-einstein condensate by directly minimizing the energy functional. J. Comput. Phys. 187(1), 230–254 (2003). https://doi.org/10.1016/S0021-9991(03)00097-4
Cai, Y., Zhang, L.H., Bai, Z., Li, R.C.: On an eigenvector-dependent nonlinear eigenvalue problem. SIAM J. Matrix Anal. Appl. 39(3), 1360–1382 (2018). https://doi.org/10.1137/17M115935X
Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45(1–3), 90–117 (2010). https://doi.org/10.1007/s10915-010-9358-1
Chiofalo, M.L., Succi, S., Tosi, M.: Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E 62(5), 7438 (2000). https://doi.org/10.1103/PhysRevE.62.7438
Choi, Y., Koltracht, I., McKenna, P.: A generalization of the perron-frobenius theorem for non-linear perturbations of stiltjes matrices. Contemp. Math. 281, 325–330 (2001)
Choi, Y., Koltracht, I., McKenna, P., Savytska, N.: Global monotone convergence of newton iteration for a nonlinear eigen-problem. Linear Algebra and its Appl. 357(1–3), 217–228 (2002). https://doi.org/10.1016/S0024-3795(02)00383-X
Danaila, I., Kazemi, P.: A new sobolev gradient method for direct minimization of the gross-pitaevskii energy with rotation. SIAM J. Sci. Comput. 32(5), 2447–2467 (2010). https://doi.org/10.1137/100782115
Fetter, A.L.: Rotating trapped bose-einstein condensates. Rev. Mod. Phys. 81(2), 647–691 (2009). https://doi.org/10.1103/RevModPhys.81.647
Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU press (2013)
Hu, J., Jiang, B., Liu, X., Wen, Z.: A note on semidefinite programming relaxations for polynomial optimization over a single sphere. Sci. China Math. 59(8), 1543–1560 (2016). https://doi.org/10.1007/s11425-016-0301-5
Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive quadratically regularized newton method for riemannian optimization. SIAM J. Matrix Anal. Appl. 39(3), 1181–1207 (2018). https://doi.org/10.1137/17M1142478
Huang, P., Yang, Q., Yang, Y.: Finding the global optimum of a class of quartic minimization problem. arXiv preprint arXiv:2007.09630 (2020)
Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59(10), 2037–2048 (2016). https://doi.org/10.1007/s11425-015-0234-x
Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: The defocusing nonlinear Schrödinger equation: from dark solitons to vortices and vortex rings. SIAM (2015)
Lakoba, T.I., Yang, J.: A generalized petviashvili iteration method for scalar and vector hamiltonian equations with arbitrary form of nonlinearity. J. Comput. Phys. 226(2), 1668–1692 (2007). https://doi.org/10.1016/j.jcp.2007.06.009
Liu, C.S.: A positivity preserving iterative method for finding the ground states of saturable nonlinear schrödinger equations. J. Sci. Comput. 84(3), 1–22 (2020). https://doi.org/10.1007/s10915-020-01297-8
Noda, T.: Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix. Numer. Math. 17(5), 382–386 (1971). https://doi.org/10.1007/BF01436087
Oliveira, I.F., Takahashi, R.H.: An enhancement of the bisection method average performance preserving minmax optimality. ACM Trans. Math. Softw. (TOMS) 47(1), 1–24 (2020). https://doi.org/10.1145/3423597
Pethick, C.J., Smith, H.: Bose-Einstein condensation in dilute gases. Cambridge University Press, Cambridge (2008)
Varga, R.S.: Matrix Iterative analysis. Springer, New York (2000)
Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1), 397–434 (2013). https://doi.org/10.1007/s10107-012-0584-1
Wu, X., Wen, Z., Bao, W.: A regularized newton method for computing ground states of bose-einstein condensates. J. Sci. Comput. 73(1), 303–329 (2017). https://doi.org/10.1007/s10915-017-0412-0
Yang, J.: Nonlinear waves in integrable and nonintegrable systems. SIAM (2010)
Yang, J., Lakoba, T.I.: Accelerated imaginary-time evolution methods for the computation of solitary waves. Stud. Appl. Math. 120(3), 265–292 (2008). https://doi.org/10.1111/j.1467-9590.2008.00398.x
Acknowledgements
The authors would like to thank the anonymous referees for their valuable suggestions, which help us to improve the paper greatly.
Funding
The first author was funded by the Tianjin Graduate Research and Innovation Project (No. 2019YJSB040). The second author was funded by the National Natural Science Foundation of China (Grant No. 11671217, No. 12071234).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was funded by the National Natural Science Foundation of China (Grant No. 11671217, No. 12071234) and the Tianjin Graduate Research and Innovation Project (No. 2019YJSB040)
Rights and permissions
About this article
Cite this article
Huang, P., Yang, Q. Newton-Based Methods for Finding the Positive Ground State of Gross-Pitaevskii Equations. J Sci Comput 90, 49 (2022). https://doi.org/10.1007/s10915-021-01711-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01711-9