Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Newton-Based Methods for Finding the Positive Ground State of Gross-Pitaevskii Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The discretization of Gross-Pitaevskii equations (GPE) leads to a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). We use two Newton-based methods to compute the positive ground state of GPE. The first method comes from the Newton-Noda iteration for saturable nonlinear Schrödinger equations proposed by Ching-Sung Liu, which can be transferred to GPE naturally. The second method combines the idea of the root-finding methods and the idea of Newton method, in which, each subproblem involving block tridiagonal linear systems can be solved easily. We give an explicit convergence and computational complexity analysis for it. Numerical experiments are provided to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article.

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press (2009)

  2. Antoine, X., Duboscq, R.: Gpelab, a matlab toolbox to solve gross-pitaevskii equations i: Computation of stationary solutions. Comput. Phys. Commun. 185(11), 2969–2991 (2014). https://doi.org/10.1016/j.cpc.2014.06.026

    Article  MATH  Google Scholar 

  3. Antoine, X., Duboscq, R.: Modeling and computation of bose-einstein condensates: stationary states, nucleation, dynamics, stochasticity. In: Nonlinear optical and atomic systems, pp. 49–145. Springer (2015)

  4. Antoine, X., Levitt, A., Tang, Q.: Efficient spectral computation of the stationary states of rotating bose-einstein condensates by preconditioned nonlinear conjugate gradient methods. J. Comput. Phys. 343, 92–109 (2017). https://doi.org/10.1016/j.jcp.2017.04.040

    Article  MathSciNet  MATH  Google Scholar 

  5. Antoine, X., Tang, Q., Zhang, Y.: A preconditioned conjugated gradient method for computing ground states of rotating dipolar bose-einstein condensates via kernel truncation method for dipole-dipole interaction evaluation. Commun. Comput. Phys. 24(4), 966–988 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bao, W., Cai, Y.: Mathematical theory and numerical methods for bose-einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013). https://doi.org/10.3934/krm.2013.6.1

    Article  MathSciNet  MATH  Google Scholar 

  7. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the gross-pitaevskii equation with angular momentum rotation. Math. Comp. 82(281), 99–128 (2013). https://doi.org/10.1090/S0025-5718-2012-02617-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Bao, W., Cai, Y., Wang, H.: Efficient numerical methods for computing ground states and dynamics of dipolar bose-einstein condensates. J. Comput. Phys. 229(20), 7874–7892 (2010). https://doi.org/10.1016/j.jcp.2010.07.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, W., Chern, I.L., Lim, F.Y.: Efficient and spectrally accurate numerical methods for computing ground and first excited states in bose-einstein condensates. J. Comput. Phys. 219(2), 836–854 (2006). https://doi.org/10.1016/j.jcp.2006.04.019

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao, W., Du, Q.: Computing the ground state solution of bose-einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25(5), 1674–1697 (2004). https://doi.org/10.1137/S1064827503422956

    Article  MathSciNet  MATH  Google Scholar 

  11. Bao, W., Tang, W.: Ground-state solution of bose-einstein condensate by directly minimizing the energy functional. J. Comput. Phys. 187(1), 230–254 (2003). https://doi.org/10.1016/S0021-9991(03)00097-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai, Y., Zhang, L.H., Bai, Z., Li, R.C.: On an eigenvector-dependent nonlinear eigenvalue problem. SIAM J. Matrix Anal. Appl. 39(3), 1360–1382 (2018). https://doi.org/10.1137/17M115935X

    Article  MathSciNet  MATH  Google Scholar 

  13. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45(1–3), 90–117 (2010). https://doi.org/10.1007/s10915-010-9358-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Chiofalo, M.L., Succi, S., Tosi, M.: Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E 62(5), 7438 (2000). https://doi.org/10.1103/PhysRevE.62.7438

    Article  Google Scholar 

  15. Choi, Y., Koltracht, I., McKenna, P.: A generalization of the perron-frobenius theorem for non-linear perturbations of stiltjes matrices. Contemp. Math. 281, 325–330 (2001)

    Article  MathSciNet  Google Scholar 

  16. Choi, Y., Koltracht, I., McKenna, P., Savytska, N.: Global monotone convergence of newton iteration for a nonlinear eigen-problem. Linear Algebra and its Appl. 357(1–3), 217–228 (2002). https://doi.org/10.1016/S0024-3795(02)00383-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Danaila, I., Kazemi, P.: A new sobolev gradient method for direct minimization of the gross-pitaevskii energy with rotation. SIAM J. Sci. Comput. 32(5), 2447–2467 (2010). https://doi.org/10.1137/100782115

    Article  MathSciNet  MATH  Google Scholar 

  18. Fetter, A.L.: Rotating trapped bose-einstein condensates. Rev. Mod. Phys. 81(2), 647–691 (2009). https://doi.org/10.1103/RevModPhys.81.647

    Article  Google Scholar 

  19. Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU press (2013)

  20. Hu, J., Jiang, B., Liu, X., Wen, Z.: A note on semidefinite programming relaxations for polynomial optimization over a single sphere. Sci. China Math. 59(8), 1543–1560 (2016). https://doi.org/10.1007/s11425-016-0301-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, J., Milzarek, A., Wen, Z., Yuan, Y.: Adaptive quadratically regularized newton method for riemannian optimization. SIAM J. Matrix Anal. Appl. 39(3), 1181–1207 (2018). https://doi.org/10.1137/17M1142478

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, P., Yang, Q., Yang, Y.: Finding the global optimum of a class of quartic minimization problem. arXiv preprint arXiv:2007.09630 (2020)

  23. Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59(10), 2037–2048 (2016). https://doi.org/10.1007/s11425-015-0234-x

    Article  MathSciNet  MATH  Google Scholar 

  24. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: The defocusing nonlinear Schrödinger equation: from dark solitons to vortices and vortex rings. SIAM (2015)

  25. Lakoba, T.I., Yang, J.: A generalized petviashvili iteration method for scalar and vector hamiltonian equations with arbitrary form of nonlinearity. J. Comput. Phys. 226(2), 1668–1692 (2007). https://doi.org/10.1016/j.jcp.2007.06.009

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, C.S.: A positivity preserving iterative method for finding the ground states of saturable nonlinear schrödinger equations. J. Sci. Comput. 84(3), 1–22 (2020). https://doi.org/10.1007/s10915-020-01297-8

    Article  Google Scholar 

  27. Noda, T.: Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix. Numer. Math. 17(5), 382–386 (1971). https://doi.org/10.1007/BF01436087

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliveira, I.F., Takahashi, R.H.: An enhancement of the bisection method average performance preserving minmax optimality. ACM Trans. Math. Softw. (TOMS) 47(1), 1–24 (2020). https://doi.org/10.1145/3423597

    Article  MathSciNet  Google Scholar 

  29. Pethick, C.J., Smith, H.: Bose-Einstein condensation in dilute gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  30. Varga, R.S.: Matrix Iterative analysis. Springer, New York (2000)

    Book  Google Scholar 

  31. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142(1), 397–434 (2013). https://doi.org/10.1007/s10107-012-0584-1

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, X., Wen, Z., Bao, W.: A regularized newton method for computing ground states of bose-einstein condensates. J. Sci. Comput. 73(1), 303–329 (2017). https://doi.org/10.1007/s10915-017-0412-0

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, J.: Nonlinear waves in integrable and nonintegrable systems. SIAM (2010)

  34. Yang, J., Lakoba, T.I.: Accelerated imaginary-time evolution methods for the computation of solitary waves. Stud. Appl. Math. 120(3), 265–292 (2008). https://doi.org/10.1111/j.1467-9590.2008.00398.x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions, which help us to improve the paper greatly.

Funding

The first author was funded by the Tianjin Graduate Research and Innovation Project (No. 2019YJSB040). The second author was funded by the National Natural Science Foundation of China (Grant No. 11671217, No. 12071234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by the National Natural Science Foundation of China (Grant No. 11671217, No. 12071234) and the Tianjin Graduate Research and Innovation Project (No. 2019YJSB040)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Yang, Q. Newton-Based Methods for Finding the Positive Ground State of Gross-Pitaevskii Equations. J Sci Comput 90, 49 (2022). https://doi.org/10.1007/s10915-021-01711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01711-9

Keywords

Mathematics Subject Classification

Navigation