Abstract
In this work, a solution remapping technique is developed to accelerate the flow convergence for the intermediate shapes when a high-order discontinuous Galerkin (DG) method is employed as a compressible Euler flow solver in the airfoil design problems. Once the shape is updated, the proposed technique is applied to initialize the flow simulation for the new shape via a solution remapping formula and a maximum-and-minimum-preserving limiter. First, the solution remapping formula is used to remap the solution of the current shape into a piecewise polynomial on the mesh of the new shape. Then the piecewise polynomial is constrained with the maximum-and-minimum-preserving limiter. The modified piecewise polynomial is used as the initial value for the new shape. Numerical experiments show that the proposed technique can attractively accelerate flow convergence and significantly reduce up to 80% of the computational time in the airfoil design problems with a high-order DG solver.
Similar content being viewed by others
Data availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
References
Bhabra, M., Nadarajah, S.: Aerodynamic shape optimization for the NURBS-enhanced discontinuous Galerkin method. In: AIAA Aviation 2019 Forum (2019). https://doi.org/10.2514/6.2019-3197
Blazek, J.: Computational Fluid Dynamics: Principles and Applications. Elsevier (2005). https://doi.org/10.1016/B978-0-08-044506-9.X5000-0
de Boer, A., van der Schoot, M.S., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85(11–14), 784–795 (2007). https://doi.org/10.1016/j.compstruc.2007.01.013
Chan, C., Bai, H., He, D.: Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Appl. Energy 213, 148–157 (2018) https://doi.org/10.1016/j.apenergy.2018.01.029. http://www.sciencedirect.com/science/article/pii/S0306261918300291
Chen, G., Fidkowski, K.J.: Discretization error control for constrained aerodynamic shape optimization. J. Comput. Phys. 387, 163–185 (2019) https://doi.org/10.1016/j.jcp.2019.02.038. http://www.sciencedirect.com/science/article/pii/S002199911930155X
Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54(190), 545–581 (1990). https://doi.org/10.1090/S0025-5718-1990-1010597-0
Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989). https://doi.org/10.1016/0021-9991(89)90183-6
Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989). https://doi.org/10.1090/S0025-5718-1989-0983311-4
Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998) https://doi.org/10.1006/jcph.1998.5892. http://www.sciencedirect.com/science/article/pii/S0021999198958922
Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183(2), 508–532 (2002) https://doi.org/10.1006/jcph.2002.7206. http://www.sciencedirect.com/science/article/pii/S0021999102972062
Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24(3), 979–1004 (2003). https://doi.org/10.1137/S1064827501389084
Hicks, R.M., Henne, P.A.: Wing design by numerical optimization. J. Aircr. 15(7), 407–412 (1978). https://doi.org/10.2514/3.58379
Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)
Jameson, A., Schmidt, W., Turkel, E.: Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In: AIAA 14th Fluid and Plasma Dynamics Conference, p. 1259 (1981). https://doi.org/10.2514/6.1981-1259
Kaland, L., Sonntag, M., Gauger, N.R.: Adaptive aerodynamic design optimization for Navier-Stokes using shape derivatives with discontinuous Galerkin methods. In: D. Greiner, B. Galván, J. Périaux, N. Gauger, K. Giannakoglou, G. Winter (eds.) Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, pp. 143–158. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-11541-2_9
LeVeque, R.J.: Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge (2002)
Li, D., Hartmann, R.: Adjoint-based airfoil optimization with discretization error control. Int. J. Numeri. Methods Fluids 77(1), 1–17 (2015). https://doi.org/10.1002/fld.3971
Lu, J.: An a Posteriori Error Control Framework for Adaptive Precision Optimization Using Discontinuous Galerkin Finite Element Method. Ph.D. thesis, Massachusetts Institute of Technology (2005)
Lyu, Z., Kenway, G.K.W., Martins, J.R.R.A.: Aerodynamic shape optimization investigations of the common research model wing benchmark. AIAA J. 53(4), 968–985 (2015). https://doi.org/10.2514/1.J053318
Naumann, D., Evans, B., Walton, S., Hassan, O.: A novel implementation of computational aerodynamic shape optimisation using Modified Cuckoo Search. Appl. Math. Modell. 40(7), 4543–4559 (2016) https://doi.org/10.1016/j.apm.2015.11.023. http://www.sciencedirect.com/science/article/pii/S0307904X15007374
Persson, P.O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008). https://doi.org/10.1137/070692108
Salmoiraghi, F., Scardigli, A., Telib, H., Rozza, G.: Free-form deformation, mesh morphing and reduced-order methods: enablers for efficient aerodynamic shape optimisation. Int. J. Comput. Fluid Dyn. 32(4–5), 233–247 (2018). https://doi.org/10.1080/10618562.2018.1514115
Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. NASA/CR-2014-218178, NF1676L-18332 (2014)
Spall, J.C.: An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Tech. Digest 19(4), 482–492 (1998)
Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley & Sons, New Jersey (2005)
Toman, U.T., Hassan, A.K.S., Owis, F.M., Mohamed, A.S.: Blade shape optimization of an aircraft propeller using space mapping surrogates. Adv. Mech. Eng. 11(7) (2019). https://doi.org/10.1177/1687814019865071
Wang, J., Wang, Z., Liu, T.: Solution remapping technique to accelerate flow convergence for finite volume methods applied to shape optimization design. Numeri. Math. Theory Methods Appl. 13(4), 863–880 (2020) https://doi.org/10.4208/nmtma.OA-2019-0164. http://global-sci.org/intro/article_detail/nmtma/16957.html
Wang, K., Yu, S., Wang, Z., Feng, R., Liu, T.: Adjoint-based airfoil optimization with adaptive isogeometric discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 344, 602–625 (2019). https://doi.org/10.1016/j.cma.2018.10.033
Wang, Z.: A perspective on high-order methods in computational fluid dynamics. Sci. China Phys. Mech. Astron. 59(1), 614701 (2016). https://doi.org/10.1007/s11433-015-5706-3
Wang, Z.J.: High-order computational fluid dynamics tools for aircraft design. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 372(2022), 20130318 (2014). https://doi.org/10.1098/rsta.2013.0318
Wang, Z.J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H.T., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013). https://doi.org/10.1002/fld.3767
Xing, X.Q., Damodaran, M.: Application of simultaneous perturbation stochastic approximation method for aerodynamic shape design optimization. AIAA J. 43(2), 284–294 (2005). https://doi.org/10.2514/1.9484
Zahr, M.J., Persson, P.O.: High-order, time-dependent aerodynamic optimization using a discontinuous Galerkin discretization of the Navier-Stokes equations. In: 54th AIAA Aerospace Sciences Meeting (2016). https://doi.org/10.2514/6.2016-0064
Zahr, M.J., Persson, P.O.: Energetically optimal flapping wing motions via adjoint-based optimization and high-order discretizations. In: H. Antil, D.P. Kouri, M.D. Lacasse, D. Ridzal (eds.) Frontiers in PDE-Constrained Optimization, pp. 259–289. Springer, New York, NY (2018). https://doi.org/10.1007/978-1-4939-8636-1_7
Zhang, X., Shu, C.W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010) https://doi.org/10.1016/j.jcp.2009.12.030. http://www.sciencedirect.com/science/article/pii/S0021999109007165
Acknowledgements
The authors would like to acknowledge the support of National Numerical Wind Tunnel Project and the National Natural Science Foundation of China (No.U1730118 and No.91530325).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, J., Liu, T. Local-Maximum-and-Minimum-Preserving Solution Remapping Technique to Accelerate Flow Convergence for Discontinuous Galerkin Methods in Shape Optimization Design. J Sci Comput 87, 79 (2021). https://doi.org/10.1007/s10915-021-01499-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01499-8
Keywords
- Solution remapping technique
- Discontinuous Galerkin method
- Flow convergence
- Aerodynamic shape optimization