Abstract
We study nonlinear hyperbolic conservation laws with non-convex flux in one space dimension and, for a broad class of numerical methods based on summation by parts operators, we compute numerically the kinetic functions associated with each scheme. As established by LeFloch and collaborators, kinetic functions (for continuous or discrete models) uniquely characterize the macro-scale dynamics of small-scale dependent, undercompressive, nonclassical shock waves. We show here that various entropy-dissipative numerical schemes can yield nonclassical solutions containing classical shocks, including Fourier methods with (super-) spectral viscosity, finite difference schemes with artificial dissipation, discontinuous Galerkin schemes with or without modal filtering, and TeCNO schemes. We demonstrate numerically that entropy stability does not imply uniqueness of the limiting numerical solutions for scalar conservation laws in one space dimension, and we compute the associated kinetic functions in order to distinguish between these schemes. In addition, we design entropy-dissipative schemes for the Keyfitz–Kranzer system whose solutions are measures with delta shocks. This system illustrates the fact that entropy stability does not imply boundedness under grid refinement.
Similar content being viewed by others
References
Berthon, C., Coquel, F., LeFloch, P.G.: Why many theories of shock waves are necessary: kinetic relations for non-conservative systems. Proc. R. Soc. Edinb. Sect. A 142(1), 1–37 (2012). https://doi.org/10.1017/S0308210510001009
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671. arXiv:1411.1607 [cs.MS]
Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994). https://doi.org/10.1006/jcph.1994.1057
Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999). https://doi.org/10.1006/jcph.1998.6114
Castro, M.J., LeFloch, P.G., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J. Comput. Phys. 227(17), 8107–8129 (2008). https://doi.org/10.1016/j.jcp.2008.05.012
Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025
Clawpack Development Team: Clawpack software (2019)
Condat, L.: A direct algorithm for 1-D total variation denoising. IEEE Signal Process. Lett. 20(11), 1054–1057 (2013). https://doi.org/10.1109/LSP.2013.2278339
Dafermos, C.M.: The entropy rate admissibility criterion for solutions of hyperbolic conservation laws. J. Differ. Equ. 14(2), 202–212 (1973). https://doi.org/10.1016/0022-0396(73)90043-0
De Lellis, C., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Q. Appl. Math. 62(4), 687–700 (2004). https://doi.org/10.1090/qam/2104269
Fernández, D.C.D.R., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214–239 (2014). https://doi.org/10.1016/j.jcp.2014.01.038
Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016
Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014
Fjordholm, U.S.: High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. Ph.D. Thesis, ETH Zürich (2013). https://doi.org/10.3929/ethz-a-007622508
Fjordholm, U.S., Käppeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measure-valued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17, 763–827 (2017). https://doi.org/10.1007/s10208-015-9299-z
Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012). https://doi.org/10.1137/110836961
Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13(2), 139–159 (2013). https://doi.org/10.1007/s10208-012-9117-9
Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numerica 25, 567–679 (2016). https://doi.org/10.1017/S0962492916000088
Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013). https://doi.org/10.1137/120890144
Gassner, G.J., Svärd, M., Hindenlang, F.J.: Stability issues of entropy-stable and/or split-form high-order schemes (2020). arXiv:2007.09026 [math.NA]
Guo, B.Y., Ma, H.P., Tadmor, E.: Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39(4), 1254–1268 (2001)
Hayes, B.T., LeFloch, P.G.: Non-classical shocks and kinetic relations: scalar conservation laws. Arch. Ration. Mech. Anal. 139(1), 1–56 (1997). https://doi.org/10.1007/s002050050046
Hayes, B.T., LeFloch, P.G.: Nonclassical shocks and kinetic relations: finite difference schemes. SIAM J. Numer. Anal. 35(6), 2169–2194 (1998). https://doi.org/10.1137/S0036142997315998
Hesthaven, J., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008). https://doi.org/10.1090/S0025-5718-08-02110-8
Hicken, J.E.: Entropy-stable, high-order summation-by-parts discretizations without interface penalties. J. Sci. Comput. 82(2), 50 (2020). https://doi.org/10.1007/s10915-020-01154-8
Hicken, J.E., Fernández, D.C.D.R., Zingg, D.W.: Multidimensional summation-by-parts operators: general theory and application to simplex elements. SIAM J. Sci. Comput. 38(4), A1935–A1958 (2016). https://doi.org/10.1137/15M1038360
Hou, T.Y., LeFloch, P.G.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62(206), 497–530 (1994). https://doi.org/10.1090/S0025-5718-1994-1201068-0
Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021
Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008). https://doi.org/10.1137/07070485X
Ketcheson, D.I.: Relaxation Runge–Kutta methods: conservation and stability for inner-product norms. SIAM J. Numer. Anal. 57(6), 2850–2870 (2019). https://doi.org/10.1137/19M1263662. arXiv:1905.09847 [math.NA]
Ketcheson, D.I., Mandli, K., Ahmadia, A.J., Alghamdi, A., De Luna, M.Q., Parsani, M., Knepley, M.G., Emmett, M.: Pyclaw: accessible, extensible, scalable tools for wave propagation problems. SIAM J. Sci. Comput. 34(4), C210–C231 (2012). https://doi.org/10.1137/110856976
Ketcheson, D.I., Parsani, M., LeVeque, R.J.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35(1), A351–A377 (2013). https://doi.org/10.1137/110830320
Keyfitz, B.L.: Singular shocks: retrospective and prospective. Confluentes Mathematici 3(03), 445–470 (2011). https://doi.org/10.1142/S1793744211000424
Keyfitz, B.L., Kranzer, H.C.: Spaces of weighted measures for conservation laws with singular shock solutions. J. Differ. Equ. 118(2), 420–451 (1995). https://doi.org/10.1006/jdeq.1995.1080
Kopriva, D.A., Gassner, G.J.: On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010). https://doi.org/10.1007/s10915-010-9372-3
Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 195–212. Academic Press, New York (1974)
LeFloch, P.G.: An existence and uniqueness result for two nonstrictly hyperbolic systems. In: Nonlinear Evolution Equations that Change Type, vol. 27, Springer, New York, pp. 126–138 (1990). https://doi.org/10.1007/978-1-4613-9049-7_10
LeFloch, P.G.: An introduction to nonclassical shocks of systems of conservation laws. In: Kröner, D., Ohlberger, M., Rohde, C. (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, vol. 5, Springer, Berlin, pp. 28–72(1999). https://doi.org/10.1007/978-3-642-58535-7_2
LeFloch, P.G.: Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Birkhäuser, Basel (2002). https://doi.org/10.1007/978-3-0348-8150-0
LeFloch, P.G.: Kinetic relations for undercompressive shock waves. Physical, mathematical, and numerical issues. In: Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena. Contemporary Mathematics, vol. 526, pp. 237–272. American Mathematical Society, Providence (2010)
LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/S003614290240069X
LeFloch, P.G., Mishra, S.: Numerical methods with controlled dissipation for small-scale dependent shocks. Acta Numerica 23, 743–816 (2014). https://doi.org/10.1017/S0962492914000099
LeFloch, P.G., Mohammadian, M.: Why many theories of shock waves are necessary: kinetic functions, equivalent equations, and fourth-order models. J. Comput. Phys. 227(8), 4162–4189 (2008). https://doi.org/10.1016/j.jcp.2007.12.026
LeFloch, P.G., Rohde, C.: High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal. 37(6), 2023–2060 (2000). https://doi.org/10.1137/S0036142998345256
LeFloch, P.G., Tesdall, A.: Well-controlled entropy dissipation (WCED) schemes for capturing diffusive-dispersive shocks (in preparation)
LeFloch, P.G., Tesdall, A.: Augmented hyperbolic models and diffusive-dispersive shocks (2019). arXiv:1912.03563 [math.AP]
Maday, Y., Kaber, S.M.O., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)
Maday, Y., Tadmor, E.: Analysis of the spectral vanishing viscosity method for periodic conservation laws. SIAM J. Numer. Anal. 26(4), 854–870 (1989). https://doi.org/10.1137/0726047
Mandli, K.T., Ahmadia, A.J., Berger, M., Calhoun, D., George, D.L., Hadjimichael, Y., Ketcheson, D.I., Lemoine, G.I., LeVeque, R.J.: Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2, e68 (2016). https://doi.org/10.7717/peerj-cs.68
Mattsson, K., Svärd, M., Nordström, J.: Stable and accurate artificial dissipation. J. Sci. Comput. 21(1), 57–79 (2004). https://doi.org/10.1023/B:JOMP.0000027955.75872.3f
Mitsotakis, D., Ranocha, H., Ketcheson, D.I., Süli, E.: A conservative fully-discrete numerical method for the regularised shallow water wave equations (2020). arXiv:2009.09641 [math.NA]
Nordström, J.: A roadmap to well posed and stable problems in computational physics. J. Sci. Comput. 71(1), 365–385 (2017). https://doi.org/10.1007/s10915-016-0303-9
Nordström, J., Björck, M.: Finite volume approximations and strict stability for hyperbolic problems. Appl. Numer. Math. 38(3), 237–255 (2001). https://doi.org/10.1016/S0168-9274(01)00027-7
Öffner, P., Glaubitz, J., Ranocha, H.: Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approach. ESAIM Math. Model. Numer. Anal. (ESAIM: M2AN) 52(6), 2215–2245 (2019). https://doi.org/10.1051/m2an/2018072. arXiv:1703.03561 [math.NA]
Panov, E.Y.: Uniqueness of the solution of the Cauchy problem for a first order quasilinear equation with one admissible strictly convex entropy. Math. Notes 55(5), 517–525 (1994). https://doi.org/10.1007/BF02110380
Ranocha, H.: Shallow water equations: split-form, entropy stable, well-balanced, and positivity preserving numerical methods. GEM Int. J. Geomath. 8(1), 85–133 (2017). https://doi.org/10.1007/s13137-016-0089-9. arXiv:1609.08029 [math.NA]
Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76(1), 216–242 (2018). https://doi.org/10.1007/s10915-017-0618-1. arXiv:1701.02264 [math.NA]
Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical methods for hyperbolic balance laws. Ph.D. Thesis, TU Braunschweig (2018)
Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput. Phys. 362, 20–48 (2018). https://doi.org/10.1016/j.jcp.2018.02.021. arXiv:1705.10541 [math.NA]
Ranocha, H.: Mimetic properties of difference operators: product and chain rules as for functions of bounded variation and entropy stability of second derivatives. BIT Numer. Math. 59(2), 547–563 (2019). https://doi.org/10.1007/s10543-018-0736-7. arXiv:1805.09126 [math.NA]
Ranocha, H., Dalcin, L., Parsani, M.: Fully-discrete explicit locally entropy-stable schemes for the compressible Euler and Navier–Stokes equations. Comput. Math. Appl. 80(5), 1343–1359 (2020). https://doi.org/10.1016/j.camwa.2020.06.016. arXiv:2003.08831 [math.NA]
Ranocha, H., Gassner, G.J.: Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes (2020). arXiv:2009.13139 [math.NA]
Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018). https://doi.org/10.1016/j.apnum.2018.01.019. See also arXiv:1606.00995 [math.NA] and arXiv:1606.01056 [math.NA]
Ranocha, H., Ketcheson, D.I.: Relaxation Runge-Kutta methods for Hamiltonian problems. J. Sci. Comput. 84(1) (2020). https://doi.org/10.1007/s10915-020-01277-y. arXiv:2001.04826 [math.NA]
Ranocha, H., Lóczi, L., Ketcheson, D.I.: General relaxation methods for initial-value problems with application to multistep schemes. Numerische Mathematik (2020). https://doi.org/10.1007/s00211-020-01158-4. arXiv:2003.03012 [math.NA]
Ranocha, H., Mitsotakis, D., Ketcheson, D.I.: A broad class of conservative numerical methods for dispersive wave equations (2020). Accept. Commun. Comput. Phys. arXiv:2006.14802 [math.NA]
Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016). https://doi.org/10.1016/j.jcp.2016.02.009. arXiv:1511.02052 [math.NA]
Ranocha, H., Öffner, P., Sonar, T.: Extended skew-symmetric form for summation-by-parts operators and varying Jacobians. J. Comput. Phys. 342, 13–28 (2017). https://doi.org/10.1016/j.jcp.2017.04.044. arXiv:1511.08408 [math.NA]
Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge–Kutta methods: fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier–Stokes equations. SIAM J. Sci. Comput. 42(2), A612–A638 (2020). https://doi.org/10.1137/19M1263480. arXiv:1905.09129 [math.NA]
Sanders, R., Sever, M.: The numerical study of singular shocks regularized by small viscosity. J. Sci. Comput. 19(1–3), 385–404 (2003). https://doi.org/10.1023/A:1025320412541
Schochet, S.: The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws. SIAM J. Numer. Anal. 27(5), 1142–1159 (1990). https://doi.org/10.1137/0727066
Strand, B.: Summation by parts for finite difference approximations for \(d/dx\). J. Comput. Phys. 110(1), 47–67 (1994). https://doi.org/10.1006/jcph.1994.1005
Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031
Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-0890255-3
Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989). https://doi.org/10.1137/0726003
Tadmor, E.: Super viscosity and spectral approximations of nonlinear conservation laws. In: Baines, M.J., Morton, K.W. (eds.) Quality and Reliability of Large–Eddy Simulations II, pp. 69–82. Clarendon Press, Oxford (1993)
Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numerica 12, 451–512 (2003). https://doi.org/10.1017/S0962492902000156
Tadmor, E., Waagan, K.: Adaptive spectral viscosity for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(2), A993–A1009 (2012). https://doi.org/10.1137/110836456
Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6(2), 159–192 (1991). https://doi.org/10.1007/BF01062118
Acknowledgements
The authors would like to thank David Ketcheson for very interesting discussions. This research work was supported by the King Abdullah University of Science and Technology (KAUST). The first author (PLF) was partially supported by the Innovative Training Network (ITN) Grant 642768 (ModCompShocks). The second author (HR) was partially supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) under Grant SO 363/14-1.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
LeFloch, P.G., Ranocha, H. Kinetic Functions for Nonclassical Shocks, Entropy Stability, and Discrete Summation by Parts. J Sci Comput 87, 55 (2021). https://doi.org/10.1007/s10915-021-01463-6
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01463-6