Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Superconvergence Analysis of the Runge–Kutta Discontinuous Galerkin Methods for a Linear Hyperbolic Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we shall establish the superconvergence property of the Runge–Kutta discontinuous Galerkin (RKDG) method for solving a linear constant-coefficient hyperbolic equation. The RKDG method is made of the discontinuous Galerkin (DG) scheme with upwind-biased numerical fluxes coupled with the explicit Runge–Kutta algorithm of arbitrary orders and stages. Superconvergence results for the numerical flux, cell averages as well as the solution and derivative at some special points are shown, which are based on a systematical study of the \(\hbox {L}^2\)-norm stability for the RKDG method and the incomplete correction techniques for the well-defined reference functions at each time stage. The result demonstrates that the superconvergence property of the semi-discrete DG method is preserved, and the optimal order in time is provided under the smoothness assumption that is independent of the number of stages. As a byproduct of the above superconvergence study, the expected order of the post-processed solution is obtained when a special initial solution is used. Some numerical experiments are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A.: Sobolev spaces. In: Pure and Applied Mathematics, vol. 65, Academic Press, New York (1975)

  2. Cao, W., Li, D., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math. Model. Numer. Anal. 51, 467–486 (2017)

    Article  MathSciNet  Google Scholar 

  3. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53, 1651–1671 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56, 732–765 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cao, W., Shu, C.-W., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM Math. Model. Numer. Anal. 51, 2213–2235 (2017)

    Article  MathSciNet  Google Scholar 

  6. Cao, W., Zhang, Z.: Some recent developments in superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations. J. Sci. Comput. 77, 1402–1423 (2018)

    Article  MathSciNet  Google Scholar 

  7. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52, 2555–2573 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss–Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comput. 86, 1233–1267 (2017)

    Article  MathSciNet  Google Scholar 

  9. Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227, 9612–9627 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)

    Article  MathSciNet  Google Scholar 

  11. Choi, M.D.: Tricks or treats with the Hilbert matrix. Am. Math. Mon. 90, 301–312 (1983)

    Article  MathSciNet  Google Scholar 

  12. Ciarlet, P.G.: The finite element method for elliptic problems. In: Studies in Mathematics and Its Applications, vol. 4, North-Holland Publishing Co., Amsterdam (1978)

  13. Cockburn, B.: An introduction to the discontinuous Galerkin method for convection-dominated problems, In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997), Lecture Notes in Mathematics, vol. 1697, Springer, Berlin, pp. 151–268 (1998)

  14. Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems, In: High-Order Methods for Computational Physics, Lecture Notes Computer Science Engineering, vol. 9, Springer, Berlin, pp. 69–224 (1999)

  15. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  Google Scholar 

  17. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)

    Article  MathSciNet  Google Scholar 

  18. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25, 337–361 (1991)

    Article  MathSciNet  Google Scholar 

  20. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  21. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  Google Scholar 

  22. Gottlieb, S.: Strong stability preserving time discretizations: a review. In: Spectral and High Order Methods for Partial Differential Equations—ICOSAHOM 2014, Lecture Notes Computer Science Engineering, vol. 106, Springer, Cham, pp. 17–30 (2015)

  23. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    Article  MathSciNet  Google Scholar 

  24. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  25. Guo, L., Yang, Y.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations with singular initial data. Int. J. Numer. Anal. Model. 14, 342–354 (2017)

    MathSciNet  MATH  Google Scholar 

  26. King, J., Mirzaee, H., Ryan, J.K., Kirby, R.M.: Smoothness-increasing accuracy-conserving (SIAC) filtering for discontinuous Galerkin solutions: improved errors versus higher-order accuracy. J. Sci. Comput. 53, 129–149 (2012)

    Article  MathSciNet  Google Scholar 

  27. Meng, X., Ryan, J.K.: Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement. Numer. Math. 136, 27–73 (2017)

    Article  MathSciNet  Google Scholar 

  28. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85, 1225–1261 (2016)

    Article  MathSciNet  Google Scholar 

  29. Meng, X., Shu, C.-W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50, 2336–2356 (2012)

    Article  MathSciNet  Google Scholar 

  30. Qiu, J., Zhang, Q. Stability, error estimate and limiters of discontinuous Galerkin methods. In: Handbook of Numerical Methods for Hyperbolic Problems, Handbook of Numerical Analysis, vol. 17, Elsevier, Amsterdam, pp. 147–171 (2016)

  31. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory report LA-UR-73-479 (1973)

  32. Ryan, J., Shu, C.-W., Atkins, H.: Extension of a postprocessing technique for the discontinuous Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci. Comput. 26, 821–843 (2005)

    Article  MathSciNet  Google Scholar 

  33. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In: Numerical Solutions of Partial Differential Equations, Advanced Mathematics Training Course, CRM Barcelona, Birkhäuser, Basel, pp. 149–201 (2009)

  34. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  35. Sun, Z., Shu, C.-W.: Strong stability of explicit Runge–Kutta time discretizations. SIAM J. Numer. Anal. 57, 1158–1182 (2019)

    Article  MathSciNet  Google Scholar 

  36. Wang, H., Zhang, Q., Shu, C.-W.: Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems. J. Sci. Comput. 81, 2080–2114 (2019)

    Article  MathSciNet  Google Scholar 

  37. Xu, Y., Shu, C.-W., Zhang, Q.: Error estimate of the fourth-order Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations (submitted). SIAM J. Numer. Anal. (2019)

  38. Xu, Y., Zhang, Q., Shu, C.-W., Wang, H.: The \(\text{ L}^2\)-norm stability analysis of Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57, 1574–1601 (2019)

    Article  MathSciNet  Google Scholar 

  39. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  Google Scholar 

  41. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Xu is supported by NSFC Grants 11671199 and 11571290. X. Meng is supported by NSFC Grant 11971132. C.-W. Shu is supported by NSF Grant DMS-1719410. Q. Zhang is supported by NSFC Grants 11671199 and 11571290.

Appendix

Appendix

In this section, the supplement proofs of three technical results are given.

1.1 Proof of (3.16)

Substituting the offset into the relationship in Lemma 2.2, we have

$$\begin{aligned} e^z + \sum _{i=r+1}^\infty \tilde{\alpha }_i(m) z^i = \Big [e^{\frac{z}{m}} + \sum _{i=r+1}^\infty \tilde{\alpha }_i(1) \Big (\frac{z}{m}\Big )^i\Big ]^m=\Big [e^{\frac{z}{m}} +\frac{z^{r+1}}{m^{r+1}}q(z)\Big ]^m, \end{aligned}$$
(9.1)

where \(q(z)=\sum _{i=0}^\infty q_{i} z^i =\sum _{i=0}^\infty \frac{\tilde{\alpha }_{i+r+1}(1)}{m^i} z^i\). Denote \(\tilde{\alpha }_{\max }=\max \limits _{\forall \kappa }|\tilde{\alpha }_\kappa (1)|\). By a direct calculation, the coefficient of \([q(z)]^{j}=\sum _{i=0}^{\infty } q_{i,j}z^i\) satisfies

$$\begin{aligned} |q_{i,j}|\le C(\tilde{\alpha }_{\max })^j, \quad 0\le i, j\le 2\zeta -1, \end{aligned}$$

where the bounding constant \(C>0\) solely depends on the termination index \(\zeta \).

Subtracting \(e^z\) from both sides of (9.1) we have

$$\begin{aligned} \sum _{i=r+1}^\infty \tilde{\alpha }_i(m) z^i= & {} \sum _{1\le j\le m}\left( {\begin{array}{c}m\\ j\end{array}}\right) \Big (e^{\frac{z}{m}}\Big )^{m-j}\Big (\frac{z^{r+1}q(z)}{m^{r+1}}\Big )^j \\= & {} \sum _{1\le j\le m}\left( {\begin{array}{c}m\\ j\end{array}}\right) \frac{z^{j(r+1)}}{m^{j(r+1)}} \Big [\sum _{i=0}^\infty \frac{1}{i!}\Big (\frac{m-j}{m}\Big )^i z^i\Big ] \Big [\sum _{i=0}^\infty q_{i,j} z^i\Big ]. \end{aligned}$$

and get

$$\begin{aligned} \tilde{\alpha }_i(m) = \sum _{1\le j\le m}\left[ \left( {\begin{array}{c}m\\ j\end{array}}\right) \frac{1}{m^{j(r+1)}} \sum _{0\le \ell \le \sigma _{ij}}q_{\ell ,j} \Big (\frac{m-j}{m}\Big )^{\sigma _{ij}-\ell }\frac{1}{(\sigma _{ij}-\ell )!} \right] , \end{aligned}$$

where \(\sigma _{ij}=i-j(r+1)\). Hence

$$\begin{aligned} |\tilde{\alpha }_i(m)|\le C\sum _{1\le j\le m}\Big [\frac{\tilde{\alpha }_{\max }}{m^{r}}\Big ]^j\le \frac{C\tilde{\alpha }_{\max }}{m^{r}}, \end{aligned}$$

provided \( m^r \ge 2\tilde{\alpha }_{\max }\). This completes the proof of this inequality.

1.2 Proof of (4.40)

It is no harm in assuming that \(q\ge 1\). Substituting (4.32) into the definition of \(\tilde{\xi }^0\) yields

$$\begin{aligned} \tilde{\xi }^0= & {} {\mathcal {H}}_h \Big ({\mathbb {G}}_hU_0 - \sum _{1\le p\le q_\mathrm{init}} {\mathcal {F}}_p (-\partial _x)^p U_0\Big ) -\Big ({\mathbb {G}}_h\Pi _0 -\sum _{1\le p\le q}{\mathcal {F}}_p (-\partial _x)^p \Pi _0\Big ) \nonumber \\= & {} {\mathcal {H}}_h {\mathbb {G}}_hU_0 - \sum _{1\le p\le q_\mathrm{init}} {\mathcal {H}}_h {\mathcal {F}}_p (-\partial _x)^p U_0 +\beta {\mathbb {G}}_h(U_0)_x - \beta \sum _{1\le p\le q}{\mathcal {F}}_p (-\partial _x)^p (U_0)_x,\nonumber \\ \end{aligned}$$
(9.2)

since \(\Pi _0 = -\beta (U_0)_x\). Because \(U_0\in H^1(I)\) is continuous in I, for any \(v\in V_h\) we have

$$\begin{aligned} ({\mathcal {H}}_h {\mathbb {G}}_hU_0 ,v) = {\mathcal {H}}({\mathbb {G}}_hU_0 ,v) = {\mathcal {H}}(U_0 ,v) =-\beta ((U_0)_x ,v) = -\beta ({\mathbb {P}}_h(U_0)_x ,v), \end{aligned}$$

where the definitions of the two projections are used. Similarly, due to Lemma 4.4, each term in the first summation of (9.2) satisfies

$$\begin{aligned} ({\mathcal {H}}_h {\mathcal {F}}_p (-\partial _x)^p U_0,v)= {\mathcal {H}}({\mathcal {F}}_p (-\partial _x)^p U_0 ,v) = \beta ({\mathcal {F}}_{p-1} (-\partial _x)^p U_0 ,v),\quad \forall v\in V_h. \end{aligned}$$

Hence, \({\mathcal {H}}_h {\mathbb {G}}_hU_0=-\beta {\mathbb {P}}_h(U_0)_x\) and \({\mathcal {H}}_h {\mathcal {F}}_p (-\partial _x)^p U_0= \beta {\mathcal {F}}_{p-1} (-\partial _x)^p U_0\). Substituting them into (9.2), we arrive at

$$\begin{aligned} \tilde{\xi }^0=-\beta \sum _{1\le p\le q_\mathrm{nt}-1} {\mathcal {F}}_p (-\partial _x)^{p+1} U_0 +\beta \sum _{1\le p\le q} {\mathcal {F}}_p (-\partial _x)^{p+1} U_0. \end{aligned}$$
(9.3)

Since \(q\le q_\mathrm{nt}\le k\), we can get (4.40), along the same line as for (4.34).

A supplement is given for \(q=0\). Since the summation is equal to zero if the index set is empty, the formula (9.3) also holds for \(q=0\) and \(q_\mathrm{nt}\ge 1\). If \(q=q_\mathrm{nt}=0\), the two summations in (9.2) vanish such that \(\tilde{\xi }^0=-\beta {\mathcal {F}}_0(U_0)_x\). For these special cases, it is easy to see that (4.40) holds.

1.3 Proof of Lemma 5.2

By the definitions of the two projections we have

$$\begin{aligned} ({\mathbb {G}}_hw - {\mathbb {C}}_hw)|_{I_j} = \widetilde{w}_j L_{j,k}, \quad j=1,2,\ldots , J, \end{aligned}$$

and the undetermined constants \(\widetilde{w}_j\) satisfy the following system of linear equations

$$\begin{aligned} \theta \widetilde{w}_j+(1-\theta )(-1)^k \widetilde{w}_{j+1} =\{\!\!\{{\mathbb {C}}_h^\perp w\}\!\!\}^{(\theta )}_{j+\frac{1}{2}}, \quad j=1,2,\ldots , J. \end{aligned}$$
(9.4)

It is proved in [8] that this linear system has a unique solution since \(\theta \ne 1/2\), and

$$\begin{aligned} \left\| {{\mathbb {G}}_hw - {\mathbb {C}}_hw}\right\| _{L^2(I)}^2 \le Ch\sum _{1\le j\le J} |\widetilde{w}_j|^2 \le Ch\sum _{1\le j\le J}|\{\!\!\{{\mathbb {C}}_h^\perp w\}\!\!\}^{(\theta )}_{j+\frac{1}{2}}|^2. \end{aligned}$$
(9.5)

Hence, it is sufficient to prove this lemma by showing

$$\begin{aligned} |\{\!\!\{{\mathbb {C}}_h^\perp w\}\!\!\}^{(\theta )}_{j+\frac{1}{2}}| \le Ch^{k+\frac{3}{2}}\left\| {w}\right\| _{H^{k+2}(I_j\cup I_{j+1})}, \quad j=1,2,\ldots ,J. \end{aligned}$$
(9.6)

To this end, let us consider the decomposition

$$\begin{aligned} \{\!\!\{{\mathbb {C}}_h^\perp w\}\!\!\}^{(\theta )}_{j+\frac{1}{2}} =\{\!\!\{{\mathbb {C}}_h^\perp ({\mathbb {P}}_h^{k+1})^\perp w\}\!\!\}^{(\theta )}_{j+\frac{1}{2}} +\{\!\!\{{\mathbb {C}}_h^\perp {\mathbb {P}}_h^{k+1}w\}\!\!\}^{(\theta )}_{j+\frac{1}{2}} =b_{j1}+b_{j2}, \end{aligned}$$

where \({\mathbb {P}}_h^{k+1}\) denotes the local \(\hbox {L}^2\)-projection on \(V_h^{k+1}\). By using the approximation property of the projections \({\mathbb {C}}_h\) and \({\mathbb {P}}_h^{k+1}\), we get

$$\begin{aligned} |b_{j1}|\le Ch^{\frac{1}{2}}\left\| {({\mathbb {P}}_h^{k+1})^\perp w}\right\| _{H^{1}(I_j\cup I_{j+1})} \le Ch^{k+\frac{3}{2}}\left\| {w}\right\| _{H^{k+2}(I_j\cup I_{j+1})}. \end{aligned}$$
(9.7)

Using (5.10), we know that \({\mathbb {C}}_h^\perp {\mathbb {P}}_h^{k+1}w(x)=w_{j,k+1}(L_{j,k+1}(x)-\vartheta _j L_{j,k}(x))\) for \(x\in I_j\), where

$$\begin{aligned} w_{j,k+1}= \frac{2k+3}{2} \int _{-1}^1 w\Big (x_j+\frac{h_j\hat{x}}{2}\Big ) L_{k+1}(\hat{x})\mathrm {d}\hat{x} = h_j^{k+1} \int _{-1}^1\partial _x^{k+1} w\Big (x_j+\frac{h_j\hat{x}}{2}\Big ) \Phi (\hat{x})\mathrm {d}\hat{x}, \end{aligned}$$

and the kernel function \(\Phi (\hat{x})=\frac{(-1)^{k+1}(2k+3)}{2^{2k+3}(k+1)!}(\hat{x}^2-1)^{k+1}\) is independent of j. In the above manipulations the Rodrigue’s formula of the Legendre polynomials and integration by parts are used. Using (5.1), we get

$$\begin{aligned} b_{j2}= & {} \theta (1-\vartheta _j)w_{j,k+1} +(1-\theta )[(-1)^{k+1}-\vartheta _{j+1}(-1)^k]w_{j+1,k+1} \nonumber \\= & {} \theta (1-\vartheta _j)h_j^{k+1} \int _{-1}^{1} \Big [ \partial _x^{k+1}w\Big (x_j+\frac{h_j\hat{x}}{2}\Big ) -\partial _x^{k+1}w \Big (x_{j+1}+\frac{h_{j+1}\hat{x}}{2}\Big ) \Big ]\Phi (\hat{x})\mathrm {d}\hat{x} \nonumber \\\le & {} C h^{k+\frac{3}{2}}\left\| {w}\right\| _{H^{k+2}(I_j\cup I_{j+1})}. \end{aligned}$$
(9.8)

where the Holder’s inequality is used at the last step. We have now proved (9.6) and hence completed the proof of this lemma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Meng, X., Shu, CW. et al. Superconvergence Analysis of the Runge–Kutta Discontinuous Galerkin Methods for a Linear Hyperbolic Equation. J Sci Comput 84, 23 (2020). https://doi.org/10.1007/s10915-020-01274-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01274-1

Keywords

Navigation