Abstract
Recently, a class of eigensolvers based on contour integrals has been developed for computing the eigenvalues inside a given region in the complex plane. The CIRR method (a Rayleigh–Ritz type method with contour integrals) is a classic example among this kind of methods. It first constructs a subspace to contain the eigenspace of interest via a set of contour integrals, and then uses the standard Rayleigh–Ritz procedure to extract desired eigenpairs. However, it was shown that the CIRR method may fail to find the desired eigenpairs when the considered eigenproblem is non-Hermitian. This fact motivates us to develop a non-Hermitian scheme for the CIRR method. To this end, we formulate a Schur–Rayleigh–Ritz procedure to extract the desired eigenpairs. The theoretical analysis shows that our new extraction scheme can make the CIRR method also applicable for the non-Hermitian problems. Some implementation issues arising in practical applications are also studied. Numerical experiments are reported to illustrate the numerical performance of our new method.
Similar content being viewed by others
References
Ahlfors, L.: Complex Analysis, 3rd edn. McGraw-Hill, Inc., New York (1979)
Anderson, A., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadephia (1999)
Austin, A.P., Trefethen, L.N.: Computing eigenvalues of real symmetric matrices with rational filters in real arithmetic. SIAM J. Sci. Comput. 37, A1365–A1387 (2015)
Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia (2000)
Beckermann, B., Golub, G.H., Labahn, G.G.: On the numerical condition of a generalized Hankel eigenvalue problem. Numer. Math. 106, 41–68 (2007)
Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. 436, 3839–3863 (2012)
Chan, T.T.: Rank revealing QR factorizations. Linear Algebra Appl. 88–89, 67–82 (1987)
Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)
Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
Fang, H.-R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34, A2220–A2246 (2012)
Fokkema, D.R., Sleijpen, G.L.G., Van Der Vorst, H.A.: Jacobi–Davidson style QR and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 94–125 (1998)
Gallivan, K., Grimme, E., Van Dooren, P.: A rational Lanczos algorithm for model reduction. Numer. Algorithms. 12, 33–64 (1996)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Güttel, S., Polizzi, E., Tang, P., Viaud, G.: Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Matrix Anal. Appl. 37, A2100–A2122 (2015)
Ikegami, T., Sakurai, T.: Contour integral eigensolver for non-Hermitian systems: a Rayleigh–Ritz-type approach. Taiwan. J. Math. 14, 825–837 (2010)
Ikegami, T., Sakurai, T., Nagashima, U.: A filter diagonalization for generalized eigenvalue problems based on the Sakurai–Sugiura projection method. J. Comput. Appl. Math. 233, 1927–1936 (2010)
Imakura, A., Du, L., Sakurai, T.: Error bounds of Rayleigh–Ritz type contour integral-based eigensolver for solving generalized eigenvalue problems. Numer. Algorithms 68, 103–120 (2015)
Krämer, L., Di Napoli, E., Galgon, M., Lang, B., Bientinesi, P.: Dissecting the FEAST algorithm for generalized eigenproblems. J. Comput. Appl. Math. 244, 1–9 (2013)
Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241–256 (1973)
Polizzi, E.: Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B 79, 115112 (2009)
Ruhe, A.: Rational Krylov: a practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 1535–1551 (1998)
Saad, Y.: Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia (2011)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems using numerical integration. J. Comput. Appl. Math. 159, 119–128 (2003)
Sakurai, T., Tadano, H.: CIRR: a Rayleigh–Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido Math. J. 36, 745–757 (2007)
Sakurai, T., Futamura, Y., Tadano, H.: Efficient parameter estimation and implementation of a contour integral-based eigensolver. J. Algorithms Comput. Technol. 7, 249–269 (2013)
Stewart, G.W.: Matrix Algorithms, Vol. II, Eigensystems. SIAM, Philadelphia (2001)
Tang, P., Polizzi, E.: FEAST as a subspace iteration eigensolver accelerated by approximate spectral projection. SIAM J. Matrix Anal. Appl. 35, 354–390 (2014)
Van Barel, M.: Designing rational filter functions for solving eigenvalue problems by contour integration. Linear Algebra Appl. 502, 346–365 (2016)
Van Barel, M., Kravanja, P.: Nonlinear eigenvalue problems and contour integrals. J. Comput. Appl. Math. 292, 526–540 (2015)
Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992)
Vecharynski, E., Yang, C., Xue, F.: Generalized preconditioned locally harmonic residual method for non-Hermitian eigenproblems. SIAM J. Sci. Comput. 38, A500–A527 (2016)
Yin, G., Chan, R., Yueng, M.-C.: A FEAST algorithm with oblique projection for generalized eigenvalue problems. Numer. Linear Algebra Appl. 24, e2092 (2017)
Acknowledgements
I would like to thank Professor Michiel E. Hochstenbach for his careful reading of the paper, and for comments which have helped to substantially improve the presentation. This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 11701593.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Yin, G. A Contour-Integral Based Method with Schur–Rayleigh–Ritz Procedure for Generalized Eigenvalue Problems. J Sci Comput 81, 252–270 (2019). https://doi.org/10.1007/s10915-019-01014-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01014-0