Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Modified Ghost Fluid Method with Acceleration Correction (MGFM/AC)

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we show that the modified ghost fluid method might suffer overheating and leads to inaccurate numerical results when directly applied to a moving rigid boundary with acceleration. We discover the insightful reasons and then develop a new technique to take into account the effect of boundary acceleration on the definition of ghost fluid states based on a generalized Piston–Riemann problem. Theoretical analysis and numerical results show that the modified ghost fluid method with acceleration correction can overcome such difficulty effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multicomponent flows. J. Comput. Phys. 95, 59–84 (1991)

    Article  MathSciNet  Google Scholar 

  2. Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994)

    Article  MathSciNet  Google Scholar 

  3. Karni, S.: Hybrid multifluid algorithms. SIAM J. Sci. Comput. 17, 1019–1039 (1996)

    Article  MathSciNet  Google Scholar 

  4. Abgrall, R.: How to prevent oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MathSciNet  Google Scholar 

  5. Jenny, P., Muller, B., Thomann, H.: Correction of conservative Euler solvers for gas mixtures. J. Comput. Phys. 132, 91–107 (1997)

    Article  MathSciNet  Google Scholar 

  6. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    Article  MathSciNet  Google Scholar 

  7. van Brummelen, E.H., Koren, B.: A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows. J. Comput. Phys. 185, 289–308 (2003)

    Article  MathSciNet  Google Scholar 

  8. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristics-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006)

    Article  Google Scholar 

  9. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hirt, C., Nichols, B.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  Google Scholar 

  11. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  Google Scholar 

  12. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous incompressible multi-fluid flows. J. Comput. Phys. 100, 25–37 (1992)

    Article  Google Scholar 

  13. Glimm, J., Marchesin, D., McBryan, O.: Subgrid resolution of fluid discontinuities, II. J. Comput. Phys. 37, 336–354 (1980)

    Article  MathSciNet  Google Scholar 

  14. Glimm, J., Marchesin, D., McBryan, O.: A numerical method for two phase flow with an unstable interface. J. Comput. Phys. 39, 179–200 (1981)

    Article  MathSciNet  Google Scholar 

  15. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  Google Scholar 

  16. Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175, 200–224 (2002)

    Article  Google Scholar 

  17. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    Article  Google Scholar 

  18. Hu, X.Y., Khoo, B.C.: An interface interaction method for compressible multifluids. J. Comput. Phys. 198, 35–64 (2004)

    Article  Google Scholar 

  19. Wang, C.W., Liu, T.G., Khoo, B.C.: A real-ghost fluid method for the simulation of multimedium compressible flow. SIAM J. Sci. Comput. 28, 278–302 (2006)

    Article  MathSciNet  Google Scholar 

  20. Liu, T.G., Khoo, B.C., Wang, C.W.: The ghost fluid method for compressible gas–water simulation. J. Comput. Phys. 204, 193–221 (2005)

    Article  MathSciNet  Google Scholar 

  21. Hao, Y., Prosperetti, A.: A numerical method for three-dimensional gas–liquid flow computations. J. Comput. Phys. 196, 126–144 (2004)

    Article  MathSciNet  Google Scholar 

  22. Farhat, C., Rallu, A., Shankaran, S.: A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions. J. Comput. Phys. 227, 7674–7700 (2008)

    Article  Google Scholar 

  23. Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228, 4012–4037 (2009)

    Article  Google Scholar 

  24. Xu, L., Feng, C.L., Liu, T.G.: Practical techniques in ghost fluid method for compressible multi-medium flows. Commun. Comput. Phys. 20, 619–659 (2016)

    Article  MathSciNet  Google Scholar 

  25. Qiu, J.X., Liu, T.G., Khoo, B.C.: Simulations of compressible two-medium flow by Runge–Kutta discontinuous Galerkin methods with the ghost fluid method. Commun. Comput. Phys. 3, 479–504 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Liu, T.G., Xie, W.F., Khoo, B.C.: The modified ghost fluid method for coupling of fluid and structure constituted with hydro-elasto-plastic equation of state. SIAM J. Sci. Comput. 30, 1105–1130 (2008)

    Article  MathSciNet  Google Scholar 

  27. Liu, T.G., Khoo, B.C., Xie, W.F.: The modified ghost fluid method as applied to extreme fluid–structure interaction in the presence of cavitation. Commun. Comput. Phys. 1, 898–919 (2006)

    MATH  Google Scholar 

  28. Sambasivan, S., UdayKumar, H.S.: Ghost fluid method for strong shock interactions. Part 1: fluid–fluid interfaces. AIAA J. 47, 2907–2922 (2009)

    Article  Google Scholar 

  29. Barton, P.T., Drikakis, D.: An Eulerian method for multi-component problems in non-linear elasticity with sliding interfaces. J. Comput. Phys. 229, 5518–5540 (2010)

    Article  MathSciNet  Google Scholar 

  30. Xu, L., Liu, T.G.: Modified ghost fluid method as applied to fluid–plate interaction. Adv. Appl. Math. Mech. 6(1), 24–48 (2014)

    Article  MathSciNet  Google Scholar 

  31. Gao, S., Liu, T.G.: 1D Exact elastic-perfectly plastic solid Riemann solver and its multi-material application. Adv. Appl. Math. Mech. 9(3), 621–650 (2017)

    Article  MathSciNet  Google Scholar 

  32. Gao, S., Liu, T.G., Yao, C.B.: A complete list of exact solution for one-dimensional elastic-perfectly plastic solid Riemann problem without vacuum. Commun. Nonlinear Sci. Numer. Simul. 63, 205–227 (2018)

    Article  MathSciNet  Google Scholar 

  33. Xu, L., Liu, T.G.: Optimal error estimation of the modified ghost fluid method. Commun. Comput. Phys. 8, 403–426 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Xu, L., Liu, T.G.: Accuracies and conservation errors of various ghost fluid methods for multimedium Riemann problem. J. Comput. Phys. 230, 4975–4990 (2011)

    Article  MathSciNet  Google Scholar 

  35. Ben-Artzi, M., Li, J.Q., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218(1), 19–43 (2006)

    Article  MathSciNet  Google Scholar 

  36. Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part I: a new methodology with test applications to 1D gas–gas and gas–water cases. Comput. Fluids 30, 291–314 (2001)

    Article  Google Scholar 

  37. Leer, B.V.: Towards the ultimate conservative difference scheme. V—a second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  38. Courant, R., Friedrichs, K.O.: Supersonic Flows and Shock Waves, p. 424. Interscience Publishers, New York (1948)

    MATH  Google Scholar 

  39. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (1999)

    Book  Google Scholar 

  40. Li, J.Q., Liu, T.G., Sun, Z.F.: Implementation of the GRP scheme for computing radially symmetric compressible fluid flows. J. Comput. Phys. 228(16), 5867–5887 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported in part by the Science Challenge Project (No. JCKY2016212A502) and National Natural Science Foundation of China (Nos. 11601013 and 91530325).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiegang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Basic Differential Relations and the Rankine–Hugoniot Relations for Fluid Flow

To solve the Riemann problem and the generalized Riemann problem, we need to use the concept of Riemann invariants and provide some differential relations among different variables. For more details, we can refer to [35, 39, 40].

For this purpose, we write the system of Euler equations (2.1) in the following form:

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {\frac{{\mathrm{{D}}\rho }}{{\mathrm{{D}}t}} = - \rho \frac{{\partial u}}{{\partial x}}}\\ {\frac{{\mathrm{{D}}u}}{{\mathrm{{D}}t}} = - \frac{1}{\rho }\frac{{\partial P}}{{\partial x}}}\\ {\frac{{\mathrm{{D}}S}}{{\mathrm{{D}}t}} = 0}, \end{array}} \right. \end{aligned}$$
(A.1)

where \( D/Dt=\partial /\partial t+u\cdot \partial /\partial x \) is the material derivative, and the entropy S is related to the other variables through the second law of thermodynamics

$$\begin{aligned} \mathrm{{d}}e = T\mathrm{{d}}S + \frac{P}{{{\rho ^2}}}\mathrm{{d}}\rho , \end{aligned}$$
(A.2)

and T is the temperature. Regarding P as a function of \( \rho \) and S, \( P=P(\rho ,S)\), then the local sound speed c is defined as

$$\begin{aligned} {c^2} = \frac{{\partial P(\rho ,S)}}{{\partial \rho }}. \end{aligned}$$
(A.3)

Thus, the third equation of (A.1) can be replaced equivalently by

$$\begin{aligned} \frac{{\mathrm{{D}}P}}{{\mathrm{{D}}t}} = - \rho {c^2}\frac{{\partial u}}{{\partial x}}. \end{aligned}$$
(A.4)

We observe that the entropy S is constant along a streamline. By the hyperbolic quasilinear analysis for equations (A.1), three eigenvalues of the system are obtained.

$$\begin{aligned} \begin{array}{*{20}{l}} {{\lambda _ - } = u - c},&\quad {{\lambda _0} = u},&\quad {{\lambda _ + } = u + c}. \end{array} \end{aligned}$$
(A.5)

We recall [35], and here introduce the important Riemann invariants \( \phi \) and \(\psi \) for \( \lambda _{-},\lambda _{+} \)

$$\begin{aligned} \begin{array}{*{20}{l}} {\phi = u - \mathop \int \limits ^\rho \frac{{c(\omega ,S)}}{\omega }d\omega },\\ {\psi = u + \mathop \int \limits ^\rho \frac{{c(\omega ,S)}}{\omega }d\omega }. \end{array} \end{aligned}$$
(A.6)

We carry out the total differential for (A.6)

$$\begin{aligned} d\psi= & {} du + \frac{c}{\rho }d\rho + \frac{{\partial \psi }}{{\partial S}}dS = du + \frac{1}{{\rho c}}dp + K(\rho ,S)dS,\end{aligned}$$
(A.7)
$$\begin{aligned} d\phi= & {} du - \frac{c}{\rho }d\rho - \frac{{\partial \phi }}{{\partial S}}dS = du - \frac{1}{{\rho c}}dp - K(\rho ,S)dS, \end{aligned}$$
(A.8)

where

$$\begin{aligned} K(\rho ,S) = - \frac{1}{{\rho c}}\frac{{\partial p}}{{\partial S}} + \mathop \int \limits ^\rho \frac{1}{\omega }\frac{{\partial c(\omega ,S)}}{{\partial S}}d\omega , \end{aligned}$$
(A.9)

Along the characteristic \( {{C}_{+}}{:}\,dx/dt=u+c\), we have

$$\begin{aligned} \begin{array}{*{20}{l}} {d\psi = K(\rho ,S)dS,}&{dS = c\frac{{\partial S}}{{\partial x}}dt}, \end{array} \end{aligned}$$
(A.10)

and along the characteristic \( {{C}_{-}}:dx/dt=u-c\), we have

$$\begin{aligned} \begin{array}{*{20}{l}} {d\phi = - K(\rho ,S)dS,}&\quad {dS = - c\frac{{\partial S}}{{\partial x}}dt}. \end{array} \end{aligned}$$
(A.11)

In particular, when the fluid is polytropic gases, we have

$$\begin{aligned} p = (\gamma - 1)\rho e, \end{aligned}$$
(A.12)

and the sound speed c,

$$\begin{aligned} {c^2} = \frac{{\gamma P}}{\rho }. \end{aligned}$$
(A.13)

The isentropic relation can be written as

$$\begin{aligned} P = {P_0}{\left( {\frac{\rho }{{{\rho _0}}}} \right) ^\gamma }. \end{aligned}$$
(A.14)

In this case, we can get the Riemann invariants as

$$\begin{aligned} \begin{array}{*{20}{l}} {\phi = u - \frac{{2c}}{{\gamma - 1}},}&\quad {\psi = u + \frac{{2c}}{{\gamma - 1}}}. \end{array} \end{aligned}$$
(A.15)

Taking the partial derivative of S for (A.13),

$$\begin{aligned} 2c\frac{{\partial c}}{{\partial S}}= & {} \frac{\gamma }{\rho }\frac{{\partial p}}{{\partial S}},\end{aligned}$$
(A.16)
$$\begin{aligned} \frac{{\partial \psi }}{{\partial S}}= & {} \frac{2}{{(\gamma - 1)}}\frac{{\partial c}}{{\partial S}} = \frac{\gamma }{{(\gamma - 1)\rho c}}\frac{{\partial p}}{{\partial S}}. \end{aligned}$$
(A.17)

Then (A.9) turns to

$$\begin{aligned} K(\rho ,S) = \frac{1}{{(\gamma - 1)\rho c}}\frac{{\partial p}}{{\partial S}} = \frac{T}{c}. \end{aligned}$$
(A.18)

Bringing (A.18) into (A.7) and (A.8)

$$\begin{aligned} d\psi= & {} du + \frac{1}{{\rho c}}dp + \frac{1}{c}TdS,\end{aligned}$$
(A.19)
$$\begin{aligned} d\phi= & {} du - \frac{1}{{\rho c}}dp - \frac{1}{c}TdS, \end{aligned}$$
(A.20)

and the second thermodynamics law can be written as

$$\begin{aligned} TdS = \frac{1}{{(\gamma - 1)\rho }}dp - \frac{{{c^2}}}{{(\gamma - 1)\rho }}d\rho . \end{aligned}$$
(A.21)

Then we have

$$\begin{aligned} TS'= & {} \frac{1}{{(\gamma - 1)\rho }}p' - \frac{{{c^2}}}{{(\gamma - 1)\rho }}\rho ',\end{aligned}$$
(A.22)
$$\begin{aligned} \psi '= & {} u' + \frac{1}{{\rho c}}p' + \frac{1}{c}TS',\end{aligned}$$
(A.23)
$$\begin{aligned} \phi '= & {} u' - \frac{1}{{\rho c}}p' - \frac{1}{c}TS'. \end{aligned}$$
(A.24)

Taking (A.1) to the Riemann invariants and entropy form

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {\frac{{\partial \phi }}{{\partial t}} + (u - c)\frac{{\partial \phi }}{{\partial x}} = T\frac{{\partial S}}{{\partial x}}}\\ {\frac{{\partial \psi }}{{\partial t}} + (u + c)\frac{{\partial \psi }}{{\partial x}} = T\frac{{\partial S}}{{\partial x}}}\\ {\frac{{\partial S}}{{\partial t}} + u\frac{{\partial S}}{{\partial x}} = 0}. \end{array}} \right. \end{aligned}$$
(A.25)

(A.25) still works across the rarefaction wave which is a smooth wave.

If there is a shock (or contact discontinuity) trajectory \( r=r(t) \) with speed \( \sigma =dr/dt\), assuming \( {{U}_{a}},{{U}_{b}} \) are the states on the wave ahead and behind the wave back. Then across the shock, \( {{U}_{a}},{{U}_{b}} \) satisfy the Rankine–Hugoniot relations,

$$\begin{aligned} \sigma ({U_a} - {U_b}) = F({U_a}) - F({U_b}). \end{aligned}$$
(A.26)
  1. (a)

    When \( {{u}_{a}}={{u}_{b}} \) and \( {{\rho }_{a}}\ne {{\rho }_{b}}\), the simple wave is a contact discontinuity, \( {{U}_{a}},{{U}_{b}} \) satisfy \( {{P}_{a}}={{P}_{b}}\), and \( \sigma ={{u}_{a}}\pm {{c}_{a}}={{u}_{b}}\pm {{c}_{a}} \)

  2. (b)

    When \( {{u}_{a}}\ne {{u}_{b}}\), the simple wave is a shock wave, from (A.26), we can get

    $$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {\sigma = \frac{{{u_a}{\rho _a} - {u_b}{\rho _b}}}{{{\rho _a} - {\rho _b}}}}\\ {{{({u_a} - {u_b})}^2} = ({P_a} - {P_b})\left( \frac{1}{{{\rho _b}}} - \frac{1}{{{\rho _a}}}\right) }\\ {{e_a} - {e_b} = \frac{{{\rho _a} - {\rho _b}}}{{2{\rho _a}{\rho _b}}}({P_a} + {P_b})}. \end{array}} \right. \end{aligned}$$
    (A.27)

By the combination of EOS function \( e=e(\rho ,P) \) and (A.27), we can get the following relation form

$$\begin{aligned}&{u_b} = {u_a} \pm H({p_b};{p_a},{\rho _a}),\end{aligned}$$
(A.28)
$$\begin{aligned}&{\rho _b} = G({P_b};{P_a},{\rho _a}), \end{aligned}$$
(A.29)

here, when the shock is related to \( {{\lambda }_{+}}=u+c\), the sign is (+), else should be (−) which is related to \( {{\lambda }_{-}}=u-c \).

The partial derivatives are noted as following forms.

$$\begin{aligned}&\begin{array}{*{20}{l}} {{H_1}({p_b};{p_a},{\rho _a}) = \frac{{\partial H}}{{\partial {p_b}}},}&\quad {{H_2}({p_b};{p_a},{\rho _a}) = \frac{{\partial H}}{{\partial {p_a}}}}&\quad {{H_3}({p_b};{p_a},{\rho _a}) = \frac{{\partial H}}{{\partial {\rho _a}}}}, \end{array}\end{aligned}$$
(A.30)
$$\begin{aligned}&\begin{array}{*{20}{l}} {{G_1}({p_b};{p_a},{\rho _a}) = \frac{{\partial G}}{{\partial {p_b}}},}&\quad {{G_2}({p_b};{p_a},{\rho _a}) = \frac{{\partial G}}{{\partial {p_a}}}}&\quad {{G_3}({p_b};{p_a},{\rho _a}) = \frac{{\partial G}}{{\partial {\rho _a}}}}. \end{array} \end{aligned}$$
(A.31)

In particular, when the EOS function is (A.12), taking \( {{\mu }^{2}}=(\gamma -1)/(\gamma +1)\), we have

$$\begin{aligned}&H({P_b};{P_a},{\rho _a}) = ({P_b} - {P_a})\sqrt{\frac{{1 - {\mu ^2}}}{{{\rho _a}({P_b} + {\mu ^2}{P_a})}}},\end{aligned}$$
(A.32)
$$\begin{aligned}&\begin{array}{*{20}{l}} {{H_1} = \frac{1}{2}\sqrt{\frac{{1 - {\mu ^2}}}{{{\rho _a}({P_b} + {\mu ^2}{P_a})}}} \frac{{{P_b} + (1 + 2{\mu ^2}){P_a}}}{{{P_b} + {\mu ^2}{P_a}}}}\\ {{H_2} = - \frac{1}{2}\sqrt{\frac{{1 - {\mu ^2}}}{{{\rho _a}({P_b} + {\mu ^2}{P_a})}}} \frac{{(2 + {\mu ^2}){P_b} + {\mu ^2}{P_a}}}{{{P_b} + {\mu ^2}{P_a}}}}\\ {{H_3} = - \frac{{{P_b} - {P_a}}}{{2{\rho _a}}}\sqrt{\frac{{1 - {\mu ^2}}}{{{\rho _a}({P_b} + {\mu ^2}{P_a})}}} }, \end{array}\end{aligned}$$
(A.33)
$$\begin{aligned}&\begin{array}{*{20}{l}} {}&{G({P_b};{P_a},{\rho _a}) = {\rho _a}\frac{{{P_b} + {\mu ^2}{P_a}}}{{{P_a} + {\mu ^2}{P_b}}}}, \end{array}\end{aligned}$$
(A.34)
$$\begin{aligned}&\begin{array}{*{20}{l}} {{G_1} = \frac{{{\rho _a}(1 - {\mu ^4}){P_a}}}{{{{({P_a} + {\mu ^2}{P_b})}^2}}},}&{{G_2} = \frac{{{\rho _a}({\mu ^4} - 1){P_b}}}{{{{({P_a} + {\mu ^2}{P_b})}^2}}},}&{{G_3} = \frac{{{P_b} + {\mu ^2}{P_a}}}{{{P_a} + {\mu ^2}{P_b}}}}. \end{array} \end{aligned}$$
(A.35)

Appendix B: Wave Pattern and Interface Solution of Riemann Problem

Considering the following Riemann problem with the EOS of gas (A.12),

$$\begin{aligned} \begin{array}{*{20}{l}} {\frac{{\partial U}}{{\partial t}} + \frac{{\partial F(U)}}{{\partial x}} = 0}\\ {\begin{array}{*{20}{l}} {U(x,0) = \left\{ {\begin{array}{*{20}{l}} {{U_L}}&{}\quad {x < x_I^0}\\ {{U_R}}&{}\quad {x > x_I^0}. \end{array}} \right. }&{} \end{array}} \end{array} \end{aligned}$$
(B.1)

As shown in Fig. 15, it is known that the wave pattern is three-waves structure [39], which are a left simple wave \( W_L \) related to \( {{\lambda }_{-}}=u-c\), a contact discontinuity related to \( {{\lambda }_{0}}=u\), and a right simple wave \( W_R \) related to \( {{\lambda }_{+}}=u+c \). The regions between these waves are two constant fluid states \( U_{1*}\), \( U_{2*} \).

Fig. 15
figure 15

Wave pattern of Riemann problem

Across the three waves, as shown in Table 1, these states satisfy conditions for Riemann invariants to be equal or satisfy the Rankine–Hugoniot relations.

Table 1 Relations across the waves of Riemann problem

Wave Pattern and Interface Solution of Riemann Problem Obtained by RBC

From the right side state definition (2.6) by RBC, the initial state distributions of Riemann problem (B.1) satisfy

$$\begin{aligned} \begin{array}{*{20}{l}} {{U_L}{:}\,\left\{ {\begin{array}{*{20}{l}} {{u_L}}\\ {{P_L}}\\ {{\rho _L}} \end{array}} \right. },&{}{{U_R}{:}\,\left\{ {\begin{array}{*{20}{l}} {{u_R} = 2u_I^0 - {u_L}}\\ {{P_R} = {P_L}}\\ {{\rho _R} = {\rho _L}} \end{array}} \right. }. \end{array} \end{aligned}$$
(B.2)

Then, we can get the solution of this problem as following form.

Fig. 16
figure 16

Wave pattern of Riemann problem obtained by RBC when \( u_{I}^{0}<{{u}_{L}} \)

  1. a.

    When \( u_{I}^{0}<{{u}_{L}}\), as shown in Fig. 16, the three-waves structure is composed of two shock wave \( W_L, W_R \) and one contact discontinuity, and the states \( U_{1*},U_{2*} \) satisfy

    $$\begin{aligned}&\begin{array}{*{20}{l}} {{u_{1*}} = {u_L} - H({P_{1*}};{P_L},{\rho _L})}\\ {{\rho _{1*}} = G({P_{1*}};{P_L},{\rho _L})}, \end{array}\end{aligned}$$
    (B.3)
    $$\begin{aligned}&\begin{array}{*{20}{l}} {{u_{2*}} = {u_R} + H({P_{2*}};{P_R},{\rho _R})}\\ {{\rho _{2*}} = G({P_{2*}};{P_R},{\rho _R})}, \end{array}\end{aligned}$$
    (B.4)
    $$\begin{aligned}&\begin{array}{*{20}{l}} {{u_{1*}} = {u_{2*}}}\\ {{P_{1*}} = {P_{2*}}}. \end{array} \end{aligned}$$
    (B.5)

Bringing (B.2) into (B.4)

$$\begin{aligned} \begin{array}{*{20}{l}} {{u_{2*}} = 2u_I^0 - {u_L} + H({P_{2*}};{P_L},{\rho _L})}\\ {{\rho _{2*}} = G({P_{2*}};{P_L},{\rho _L})}. \end{array} \end{aligned}$$
(B.6)

By the combination of (B.5), (B.3) and (B.6), we can get the following relation form

$$\begin{aligned} \begin{array}{*{20}{l}} {{u_{1*}} = {u_{2*}} = u_I^0}\\ {{\rho _{1*}} = {\rho _{2*}} = G({P_{2*}};{P_L},{\rho _L})}. \end{array} \end{aligned}$$
(B.7)

Here, we note the state on the piston interface as \( (u_{ shock }^{*},P_{ shock }^{*},\rho _{ shock }^{*}):=(u_{1*},P_{1*},\rho _{1*}) \), then they should satisfy

$$\begin{aligned} \begin{array}{*{20}{l}} {u_{ shock }^* = u_I^0}\\ {H(P_{ shock }^*;{P_L},{\rho _L}) = {u_L} - u_{ shock }^*}\\ {\rho _{ shock }^* = G(P_{ shock }^*;{P_L},{\rho _L})}. \end{array} \end{aligned}$$
(B.8)
Fig. 17
figure 17

Wave pattern of Riemann problem obtained by RBC when \( u_{I}^{0}\ge {{u}_{L}} \)

  1. b.

    When \( u_{I}^{0}\ge {{u}_{L}}\), as shown in Fig. 17, the three-waves structure is composed of two centered rarefaction wave \( W_L, W_R \) and one contact discontinuity, and the states \( U_{1*},U_{2*} \) satisfy

    $$\begin{aligned}&\begin{array}{*{20}{l}} {\int \limits _{{U_L}}^{{U_{1*}}} {d\psi } = {u_{1*}} - {u_L} + \int \limits _{{P_L}}^{{P_{1*}}} {\frac{1}{{\rho c}}dP} = 0}\\ {S({\rho _{1*}},{P_{1*}}) = S({\rho _L},{P_L})}, \end{array}\end{aligned}$$
    (B.9)
    $$\begin{aligned}&\begin{array}{*{20}{l}} {\int \limits _{{U_R}}^{{U_{2*}}} {d\phi } = {u_{2*}} - {u_R} - \int \limits _{{P_R}}^{{P_{2*}}} {\frac{1}{{\rho c}}dP} = 0}\\ {S({\rho _{2*}},{P_{2*}}) = S({\rho _R},{P_R})}, \end{array}\end{aligned}$$
    (B.10)
    $$\begin{aligned}&\begin{array}{*{20}{l}} {{u_{1*}} = {u_{2*}}}\\ {{P_{1*}} = {P_{2*}}}. \end{array} \end{aligned}$$
    (B.11)

Bringing (B.2) into (B.10)

$$\begin{aligned} \begin{array}{*{20}{l}} {{u_{2*}} = 2u_I^0 - {u_L} + \int \limits _{{P_L}}^{{P_{2*}}} {\frac{1}{{\rho c}}dP} = 0}\\ {S({\rho _{2*}},{P_{2*}}) = S({\rho _L},{P_L})}. \end{array} \end{aligned}$$
(B.12)

By the combination of (B.9), (B.11) and (B.12), we can get the following relation form

$$\begin{aligned} \begin{array}{*{20}{l}} {{u_{1*}} = {u_{2*}} = u_I^0}\\ {{\rho _{1*}} = {\rho _{2*}}}. \end{array} \end{aligned}$$
(B.13)

Here, we note the state on the piston interface as \( (u_{ rare }^{*},P_{ rare }^{*},\rho _{ rare }^{*}):=({{u}_{1*}},{{P}_{1*}},{{\rho }_{1*}})\), then they should satisfy

$$\begin{aligned} \begin{array}{*{20}{l}} {u_{ rare }^* = u_I^0},\\ {\int \limits _{{P_L}}^{P_{ rare }^*} {\frac{1}{{\rho c}}dP} = {u_L} - u_{ rare }^*},\\ {S(\rho _{ rare }^*,P_{ rare }^*) = S({\rho _L},{P_L})}. \end{array} \end{aligned}$$
(B.14)

Appendix C: Wave Pattern and Interface Solution of Generalized Riemann Problem

Considering the following generalized Riemann problem,

$$\begin{aligned} \begin{array}{*{20}{l}} {\frac{{\partial U}}{{\partial t}} + \frac{{\partial F(U)}}{{\partial x}} = 0}\\ {\begin{array}{*{20}{l}} {U(x,0) = \left\{ {\begin{array}{*{20}{l}} {{U_L} + (x - x_I^0){{U'}_L}}&{}\quad {x < x_I^0}\\ {{U_R} + (x - x_I^0){{U'}_R}}&{}\quad {x > x_I^0}. \end{array}} \right. }&{} \end{array}} \end{array} \end{aligned}$$
(C.1)

As shown in Fig. 18, The solution is piecewise smooth in a small-time range.

Note \( {{U}_{1*}}={\mathop {\lim }\nolimits _{t\rightarrow 0+}}\,{{U}_{1}}({{x}_{I}}-,t) \) and \( {{U}_{2*}}={\mathop {\lim }\nolimits _{t\rightarrow 0+}}\,{{U}_{2}}({{x}_{I}}+,t)\), referring to [35], it is known that \( (U_{1*}^{{}},U_{2*}^{{}}) \) are the solutions on both side of the contact discontinuity for Riemann problem (B.1). With time \( t\rightarrow 0+ \) and \( x\rightarrow {{x}_{I}}-\), the limiting material derivatives \( (Du/Dt)_{1*}\), \( {{(DP/Dt)}_{1*}} \) behind the left wave \( W_L \) satisfy

$$\begin{aligned} {A_L}\left( {\frac{{Du}}{{Dt}}} \right) _{1*}^ - + {B_L}\left( {\frac{{DP}}{{Dt}}} \right) _{1*}^ - = {D_L}, \end{aligned}$$
(C.2)
Fig. 18
figure 18

Wave pattern of generalized Riemann problem

with

$$\begin{aligned}&({A_L},{B_L},{D_L}) = \left\{ {\begin{array}{*{20}{ll}} {(A_L^{ shock },B_L^{ shock },D_L^{ shock })}&{}\quad {if}{{u_L} > {u_{1*}}}\\ {(A_L^{ Rare },B_L^{ Rare },D_L^{ Rare })}&{}\quad {if}{{u_L} \le {u_{1*}}}, \end{array}} \right. \end{aligned}$$
(C.3)
$$\begin{aligned}&\begin{array}{*{20}{l}} {A_L^{ shock } = 1 - {\rho _{1*}}({\sigma _L} - {u_{1*}})H_1^L},&{}{B_L^{ shock } = - \left[ {\frac{1}{{{\rho _{1*}}c_{1*}^2}}({\sigma _L} - {u_{1*}}) - H_1^L} \right] },\\ {D_L^{ shock } = L_P^L{{P'}_L} + L_u^L{{u'}_L} + L_\rho ^L{{\rho '}_L}}, &{} {{\sigma _L} = \frac{{{\rho _L}{u_L} - {\rho _{1*}}{u_{1*}}}}{{{\rho _L} - {\rho _{1*}}}}}, \end{array}\end{aligned}$$
(C.4)
$$\begin{aligned}&\begin{array}{*{20}{l}} {L_P^L = - \frac{1}{{{\rho _L}}} - ({\sigma _L} - {u_L})H_2^L,}&{}{}&{}{L_u^L = {\sigma _L} - {u_L} + ({\rho _L}c_L^2H_2^L + {\rho _L}H_3^L),}\\ {L_\rho ^L = - ({\sigma _L} - {u_L})H_3^L.}&{}{}&{}{} \end{array} \end{aligned}$$
(C.5)

Here, \( H_{i}^{L}={{H}_{i}}({{P}_{*}};{{P}_{L}},{{\rho }_{L}}),i=1,2,3 \) are given in (A.30) and (A.33).

$$\begin{aligned}&\begin{array}{*{20}{l}} {A_L^{ rare } = 1,}&{B_L^{ rare } = \frac{1}{{{\rho _{1*}}{c_{1*}}}}}, \end{array}\end{aligned}$$
(C.6)
$$\begin{aligned}&D_L^{ rare } \!= \! \left[ {\frac{{1 \!+\! {\mu ^2}}}{{1 \!+\! 2{\mu ^2}}}{{\left( {\frac{{{c_{1*}}}}{{{c_L}}}} \right) }^{1/(2{\mu ^2})}} \!+\! \frac{{{\mu ^2}}}{{1 \!+\! 2{\mu ^2}}}{{\left( {\frac{{{c_{1*}}}}{{{c_L}}}} \right) }^{(1 + {\mu ^2})/{\mu ^2}}}} \right] {T_L}{S'_L} - {c_L}{\left( {\frac{{{c_{1*}}}}{{{c_L}}}} \right) ^{1/(2{\mu ^2})}}{\psi '_L}.\nonumber \\ \end{aligned}$$
(C.7)

Here, \( {{T}_{L}}{{{S}'}_{L}}\), \( {{{\psi }'}_{L}} \) are given in (A.22) and (A.23).

Particularly, when \( {{u}_{*}}={{u}_{L}}\), (C.7) becomes

$$\begin{aligned} D_L^{ rare } = - \frac{1}{{{\rho _L}}}{P'_L} - {c_L}{u'_L}. \end{aligned}$$
(C.8)

The limiting material derivatives \( {{(Du/Dt)}_{2*}}\), \( {{(DP/Dt)}_{2*}} \) behind the right wave \( {{W}_{R}} \) satisfy

$$\begin{aligned} {A_R}\left( {\frac{{Du}}{{Dt}}} \right) _{2*}^ + + {B_R}\left( {\frac{{DP}}{{Dt}}} \right) _{2*}^ + = {D_R}, \end{aligned}$$
(C.9)

with

$$\begin{aligned}&({A_R},{B_R},{D_R}) = \left\{ {\begin{array}{*{20}{ll}} {(A_R^{ shock },B_R^{ shock },D_R^{ shock })}&{}\quad {if}{{u_{2*}} > {u_R}}\\ {(A_R^{ Rare },B_R^{ Rare },D_R^{ Rare })}&{}\quad {if}{{u_{2*}} \le {u_R}}, \end{array}} \right. \end{aligned}$$
(C.10)
$$\begin{aligned}&\begin{array}{*{20}{l}} {A_R^{ shock } = 1 + {\rho _{2*}}({\sigma _R} - {u_*})H_1^R},&{}{B_R^{ shock } = - \left[ {\frac{1}{{{\rho _{2*}}c_{2*}^2}}({\sigma _R} - {u_*}) + H_1^R} \right] },\\ {D_R^{ shock } = L_P^R{{P'}_R} + L_u^R{{u'}_R} + L_\rho ^R{{\rho '}_R}},&{}{{\sigma _R} = \frac{{{\rho _R}{u_R} - {\rho _{2*}}{u_{2*}}}}{{{\rho _R} - {\rho _{2*}}}}}, \end{array}\nonumber \\ \end{aligned}$$
(C.11)
$$\begin{aligned}&\begin{array}{*{20}{l}} {L_P^R = - \frac{1}{{{\rho _R}}} + ({\sigma _R} - {u_R})H_2^R,}&{}{}&{}{L_u^R = {\sigma _R} - {u_R} - ({\rho _R}c_R^2H_2^R + {\rho _R}H_3^R),}\\ {L_\rho ^R = ({\sigma _R} - {u_R})H_3^R.}&{}{}&{}{} \end{array} \end{aligned}$$
(C.12)

Here, \( H_{i}^{R}={{H}_{i}}({{P}_{*}};{{P}_{R}},{{\rho }_{R}}),i=1,2,3\), are given in (A.30) and (A.33).

$$\begin{aligned}&\left( {A_R^{ rare },B_R^{ rare }} \right) = \left( {1, - \frac{1}{{{\rho _{2*}}{c_{2*}}}}} \right) ,\end{aligned}$$
(C.13)
$$\begin{aligned}&{D_{ rare }} \!= \!\left[ {\frac{{1 \!+\! {\mu ^2}}}{{1 \!+\! 2{\mu ^2}}}{{\left( {\frac{{{c_{2*}}}}{{{c_R}}}} \right) }^{1/(2{\mu ^2})}} \!+\! \frac{{{\mu ^2}}}{{1 + 2{\mu ^2}}}{{\left( {\frac{{{c_{2*}}}}{{{c_R}}}} \right) }^{(1 \!+\! {\mu ^2})/{\mu ^2}}}} \right] {T_R}{S'_R} + {c_R}{\left( {\frac{{{c_{2*}}}}{{{c_R}}}} \right) ^{1/(2{\mu ^2})}}{\phi '_R}.\nonumber \\ \end{aligned}$$
(C.14)

Here, \( {{T}_{R}}{{{S}'}_{R}}\), \( {{{\phi }'}_{R}} \) are given in (A.22) and (A.24).

Particularly, when \( {{u}_{*}}={{u}_{R}}\), (C.14) turns to

$$\begin{aligned} D_R^{ rare } = - \frac{1}{{{\rho _R}}}{P'_R} + {c_R}{u'_R}. \end{aligned}$$
(C.15)

Thus, turning the material derivatives to spatial derivatives, we have the limiting spatial derivatives \( {{(\partial u/\partial x)}_{1*}}\), \( {{(\partial \rho /\partial x)}_{1*}}\), \( {{(\partial P/\partial x)}_{1*}} \) behind the left wave \( W_L \) satisfy

$$\begin{aligned} \begin{array}{*{20}{l}} {\frac{{\partial {P_{1*}}}}{{\partial x}} = - \rho _{1*}^{}\frac{{D{u_{1*}}}}{{Dt}}},\\ {\frac{{\partial {u_{1*}}}}{{\partial x}} = - \frac{1}{{\rho _{1*}^{}c_{1*}^2}}\frac{{D{P_{1*}}}}{{Dt}}},\\ {\frac{{\partial {\rho _{1*}}}}{{\partial x}} = \left\{ {\begin{array}{*{20}{l}} {\frac{{\partial \rho _{ shock }^{1*}}}{{\partial x}}}&{}\quad {u_*^{} < {u_L}}\\ {\frac{{\partial \rho _{ rare }^{1*}}}{{\partial x}}}&{}\quad {u_*^{} \ge {u_L}} \end{array}} \right. }. \end{array} \end{aligned}$$
(C.16)

Here, \( \frac{\partial \rho _{ shock }^{1*}}{\partial x} \) and \( \frac{\partial \rho _{ rare }^{1*}}{\partial x} \) satisfy

$$\begin{aligned}&\frac{{\partial {P_{1*}}}}{{\partial x}} - c_{1*}^2\frac{{\partial \rho _{ rare }^{1*}}}{{\partial x}} = (\gamma - 1){\rho _{1*}}{\left( {\frac{{{c_{1*}}}}{{{c_L}}}} \right) ^{\frac{{1 + {\mu ^2}}}{{{\mu ^2}}}}} \cdot {T_L}S{'_L},\end{aligned}$$
(C.17)
$$\begin{aligned}&g_{\rho ,L}^{ shock }\frac{{\partial {\rho _{1*}}}}{{\partial x}} + g_{P,L}^{ shock }\frac{{\partial {P_{1*}}}}{{\partial x}} + g_{u,L}^{ shock }\frac{{\partial {u_{1*}}}}{{\partial x}} = f_L^{ shock }, \end{aligned}$$
(C.18)

with

$$\begin{aligned}&{g_{\rho ,L}^{ shock } = {\sigma _L} - {u_{1*}},}\quad {g_{P,L}^{ shock } = - ({\sigma _L} - {u_{1*}}){G_1},}\quad {g_{u,L}^{ shock } = - {\rho _{1*}} + {\rho _{1*}}c_{1*}^2{G_1}},\nonumber \\&f_L^{ shock } = ({\sigma _L} - {u_L}){G_2}{P'_L} + ({\sigma _L} - {u_L}){G_3}{\rho '_L} - {\rho _L}({G_2}c_L^2 + {G_3}){u'_L}. \end{aligned}$$
(C.19)

where \( {{G}_{i}}\), \( i = 1,2,3 \) are given in (A.35);

The limiting spatial derivatives \( {{(\partial u/\partial x)}_{2*}} \), \( {{(\partial \rho /\partial x)}_{2*}}\), \( {{(\partial P/\partial x)}_{2*}} \) behind the right wave \( {{W}_{R}} \) satisfy

$$\begin{aligned} \begin{array}{*{20}{l}} {\frac{{\partial {P_{2*}}}}{{\partial x}} = - \rho _{2*}^{}\frac{{D{u_{2*}}}}{{Dt}}},\\ {\frac{{\partial {u_{2*}}}}{{\partial x}} = - \frac{1}{{\rho _{2*}^{}c_{2*}^2}}\frac{{D{P_{2*}}}}{{Dt}}},\\ {\frac{{\partial {\rho _{2*}}}}{{\partial x}} = \left\{ {\begin{array}{*{20}{l}} {\frac{{\partial \rho _{ shock }^{2*}}}{{\partial x}}}&{}\quad {u_*^{} > {u_R}}\\ {\frac{{\partial \rho _{ rare }^{2*}}}{{\partial x}}}&{}\quad {u_*^{} \le {u_R}} \end{array}} \right. }. \end{array} \end{aligned}$$
(C.20)

Here, \( \frac{\partial \rho _{ shock }^{2*}}{\partial x} \) and \( \frac{\partial \rho _{ rare }^{2*}}{\partial x} \) satisfy

$$\begin{aligned}&\frac{{\partial {P_{2*}}}}{{\partial x}} - c_{2*}^2\frac{{\partial \rho _{ rare }^{2*}}}{{\partial x}} = (\gamma - 1){\rho _{2*}}{\left( {\frac{{{c_{2*}}}}{{{c_R}}}} \right) ^{\frac{{1 + {\mu ^2}}}{{{\mu ^2}}}}} \cdot {T_R}S{'_R},\end{aligned}$$
(C.21)
$$\begin{aligned}&g_{\rho ,R}^{ shock }\frac{{\partial {\rho _{2*}}}}{{\partial x}} + g_{P,R}^{ shock }\frac{{\partial {P_{2*}}}}{{\partial x}} + g_{u,R}^{ shock }\frac{{\partial {u_{2*}}}}{{\partial x}} = f_R^{ shock }, \end{aligned}$$
(C.22)

with

$$\begin{aligned}&{g_{\rho ,R}^{ shock } = {\sigma _R} - {u_{2*}},}\quad {g_{P,R}^{ shock } = - ({\sigma _R} - {u_{2*}}){G_1},}\quad {g_{u,R}^{ shock } = - {\rho _{2*}} + {\rho _{2*}}c_{2*}^2{G_1},}\nonumber \\&f_R^{ shock } = ({\sigma _R} - {u_R}){G_2}{P'_R} + ({\sigma _R} - {u_R}){G_3}{\rho '_R} - {\rho _R}({G_2}c_R^2 + {G_3}){u'_R}. \end{aligned}$$
(C.23)

Here \( {{G}_{i}}\), \( i = 1,2,3 \) are given in (A.35).

Wave Pattern and Interface Solution of Generalized Riemann Problem Obtained by RBC

From the right side state definition (2.6) by RBC, the initial state distributions of generalized Riemann problem (C.1) satisfy

$$\begin{aligned} \begin{array}{*{20}{l}} {{U_L}{:}\,\left\{ {\begin{array}{*{20}{l}} {{u_L}}\\ {{P_L}}\\ {{\rho _L}} \end{array}} \right. },&{}\quad {{U_R}{:}\,\left\{ {\begin{array}{*{20}{l}} {{u_R} = 2u_I^0 - {u_L}}\\ {{P_R} = {P_L}}\\ {{\rho _R} = {\rho _L}} \end{array}} \right. },\\ {{{U'}_L}{:}\,\left\{ {\begin{array}{*{20}{l}} {{{u'}_L}}\\ {{{P'}_L}}\\ {{{\rho '}_L}} \end{array}} \right. },&{}\quad {{{U'}_R}{:}\,\left\{ {\begin{array}{*{20}{l}} {{{u'}_R} = {{u'}_L}}\\ {{{P'}_R} = - {{P'}_L}}\\ {{{\rho '}_R} = - {{\rho '}_L}} \end{array}} \right. }. \end{array} \end{aligned}$$
(C.24)

Then, as shown in Fig. 19, we can get the solution of this problem as following form.

Fig. 19
figure 19

Wave pattern of generalized Riemann problem obtained by RBC

  1. a.

    When \( u_{I}^{0}<{{u}_{L}}\), the three-waves structure is composed of two shock wave \( W_L, W_R \) and one contact discontinuity, the limiting states \( {{U}_{1*}}\), \( {{U}_{2*}} \) and their material derivatives \( {{(Du/Dt)}_{1*}}\), \( {{(DP/Dt)}_{1*}}\), \( {{(Du/Dt)}_{2*}}\), \( {{(DP/Dt)}_{2*}} \) behind the wave \( W_L, W_R \) satisfy

    $$\begin{aligned}&{U_{1*}} = {U_{2*}},\end{aligned}$$
    (C.25)
    $$\begin{aligned}&A_L^{ shock }\left( {\frac{{Du}}{{Dt}}} \right) _{1*}^ - + B_L^{ shock }\left( {\frac{{DP}}{{Dt}}} \right) _{1*}^ - = D_L^{ shock },\end{aligned}$$
    (C.26)
    $$\begin{aligned}&A_R^{ shock }\left( {\frac{{Du}}{{Dt}}} \right) _{2*}^ + + B_R^{ shock }\left( {\frac{{DP}}{{Dt}}} \right) _{2*}^ + = D_R^{ shock },\end{aligned}$$
    (C.27)
    $$\begin{aligned}&\begin{array}{*{20}{l}} {\left( {\frac{{Du}}{{Dt}}} \right) _{1*}^ - = \left( {\frac{{Du}}{{Dt}}} \right) _{2*}^ + },\\ {\left( {\frac{{DP}}{{Dt}}} \right) _{1*}^ - = \left( {\frac{{DP}}{{Dt}}} \right) _{2*}^ + }. \end{array} \end{aligned}$$
    (C.28)

Here, \( {{U}_{1*}}\), \( {{U}_{2*}} \) are given in (B.8).

Bringing (C.24), (C.25) into (C.4) and (C.11), we can get

$$\begin{aligned} \begin{array}{*{20}{l}} {{\sigma _R} = 2u_I^0 - {\sigma _L}},\\ {A_R^{ shock } = A_L^{ shock }},\\ {B_R^{ shock } = - B_L^{ shock }},\\ {D_R^{ shock } = - D_L^{ shock }}. \end{array} \end{aligned}$$
(C.29)

Then, (C.27) becomes

$$\begin{aligned} A_L^{ shock }\left( {\frac{{Du}}{{Dt}}} \right) _{2*}^ + - B_L^{ shock }\left( {\frac{{DP}}{{Dt}}} \right) _{2*}^ + = - D_L^{ shock }. \end{aligned}$$
(C.30)

From (C.28), (C.26) and (C.30), we have

$$\begin{aligned} \begin{array}{*{20}{l}} {\left( {\frac{{Du}}{{Dt}}} \right) _*^{}: = \left( {\frac{{Du}}{{Dt}}} \right) _{1*}^ - = 0},\\ {\left( {\frac{{DP}}{{Dt}}} \right) _*^{}: = \left( {\frac{{DP}}{{Dt}}} \right) _{1*}^ - = \frac{{D_L^{ shock }}}{{B_L^{ shock }}}}. \end{array} \end{aligned}$$
(C.31)
  1. b.

    When \( u_{I}^{0}\ge {{u}_{L}}\), the three-waves structure is composed of two rarefaction wave \( W_L, W_R \) and one contact discontinuity, the limiting states \( {{U}_{1*}}\), \( {{U}_{2*}} \) and their material derivatives \( {{(Du/Dt)}_{1*}}\), \( {{(DP/Dt)}_{1*}}\), \( {{(Du/Dt)}_{2*}}\), \( {{(DP/Dt)}_{2*}} \) behind the wave \( W_L, W_R \) satisfy

    $$\begin{aligned}&{U_{1*}} = {U_{2*}},\end{aligned}$$
    (C.32)
    $$\begin{aligned}&A_L^{ rare }\left( {\frac{{Du}}{{Dt}}} \right) _{1*}^ - + B_L^{ rare }\left( {\frac{{DP}}{{Dt}}} \right) _{1*}^ - = D_L^{ rare },\end{aligned}$$
    (C.33)
    $$\begin{aligned}&A_R^{ rare }\left( {\frac{{Du}}{{Dt}}} \right) _{2*}^ + + B_R^{ rare }\left( {\frac{{DP}}{{Dt}}} \right) _{2*}^ + = D_R^{ rare },\end{aligned}$$
    (C.34)
    $$\begin{aligned}&\begin{array}{*{20}{l}} {\left( {\frac{{Du}}{{Dt}}} \right) _{1*}^ - = \left( {\frac{{Du}}{{Dt}}} \right) _{2*}^ + },\\ {\left( {\frac{{DP}}{{Dt}}} \right) _{1*}^ - = \left( {\frac{{DP}}{{Dt}}} \right) _{2*}^ + }. \end{array} \end{aligned}$$
    (C.35)

Here, \( {{U}_{1*}}\), \( {{U}_{2*}} \) are given in (B.14).

Bringing (C.24), (C.32) into (C.6) and (C.13), we can get

$$\begin{aligned} \begin{array}{*{20}{l}} {A_R^{ rare } = A_L^{ rare }},\\ {B_R^{ rare } = - B_L^{ rare }},\\ {D_R^{ rare } = - D_L^{ rare }}. \end{array} \end{aligned}$$
(C.36)

Then, (C.34) becomes

$$\begin{aligned} A_L^{ rare }\left( {\frac{{Du}}{{Dt}}} \right) _{2*}^ + - B_L^{ rare }\left( {\frac{{DP}}{{Dt}}} \right) _{2*}^ + = - D_L^{ rare }. \end{aligned}$$
(C.37)

From (C.33), (C.37) and (C.35), we have

$$\begin{aligned}&\left( {\frac{{Du}}{{Dt}}} \right) _*^{}: = \left( {\frac{{Du}}{{Dt}}} \right) _{1*}^ - = 0,\end{aligned}$$
(C.38)
$$\begin{aligned}&\left( {\frac{{DP}}{{Dt}}} \right) _*^{}: = \left( {\frac{{DP}}{{Dt}}} \right) _{1*}^ - = \frac{{D_L^{ rare }}}{{B_L^{ rare }}}. \end{aligned}$$
(C.39)

Appendix D: Codes for PRP-Solver and GPRP-Solver

figure a
figure b
figure c
figure d
figure e
figure f
figure g
figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Feng, C. & Xu, L. Modified Ghost Fluid Method with Acceleration Correction (MGFM/AC). J Sci Comput 81, 1906–1944 (2019). https://doi.org/10.1007/s10915-019-01079-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01079-x

Keywords

Navigation