Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Tensor Representation of Non-linear Models Using Cross Approximations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Tensor representations allow compact storage and efficient manipulation of multi-dimensional data. Based on these, tensor methods build low-rank subspaces for the solution of multi-dimensional and multi-parametric models. However, tensor methods cannot always be implemented efficiently, specially when dealing with non-linear models. In this paper, we discuss the importance of achieving a tensor representation of the model itself for the efficiency of tensor-based algorithms. We investigate the adequacy of interpolation rather than projection-based approaches as a means to enforce such tensor representation, and propose the use of cross approximations for models in moderate dimension. Finally, linearization of tensor problems is analyzed and several strategies for the tensor subspace construction are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. We shall use the term tensorization throughout the entire paper for the sake of conciseness.

References

  1. Aguado, J., Borzacchiello, D., Ghnatios, C., Lebel, F., Upadhyay, R., Binetruy, C., Chinesta, F.: A simulation app based on reduced order modeling for manufacturing optimization of composite outlet guide vanes. Adv. Model. Simul. Eng. Sci. 4(1), 1–26 (2017). https://doi.org/10.1186/s40323-017-0087-y

    Article  Google Scholar 

  2. Ammar, A., Chinesta, F., Díez, P., Huerta, A.: An error estimator for separated representations of highly multidimensional models. Comput. Methods Appl. Mech. Eng. 199(25–28), 1872–1880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J. Non-Newton. Fluid Mech. 144(2–3), 98–121 (2007)

    Article  MATH  Google Scholar 

  4. Ammar, A., Zghal, A., Morel, F., Chinesta, F.: On the space–time separated representation of integral linear viscoelastic models. C.R. Mécanique 343(4), 247–263 (2015)

    Article  Google Scholar 

  5. Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical tucker format. Linear Algebra Appl. 438(2), 639–657 (2013). https://doi.org/10.1016/j.laa.2011.08.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbarulo, A., Ladevèze, P., Riou, H., Kovalevsky, L.: Proper generalized decomposition applied to linear acoustic: a new tool for broad band calculation. J. Sound Vib. 333(11), 2422–2431 (2014)

    Article  Google Scholar 

  7. Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An “empirical interpolation method”: application to efficient reduced-basis discretization of partial differential equations. C.R. Acad. Sci. I-Math. 339(9), 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bebendorf, M.: Adaptive cross approximation of multivariate functions. Constr. Approx. 34, 149–179 (2011). https://doi.org/10.1007/s00365-010-9103-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Beylkin, G., Mohlenkamp, M.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comput. 26(6), 2133–2159 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Billaud-Friess, M., Nouy, A., Zahm, O.: A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems. ESAIM Math. Model. Numer. 48(6), 1777–1806 (2014). https://doi.org/10.1051/m2an/2014019

    Article  MathSciNet  MATH  Google Scholar 

  11. Borzacchiello, D., Aguado, J., Chinesta, F.: Reduced order modelling for efficient optimisation of a hot-wall chemical vapour deposition reactor. Int. J. Numer. Method Heat Fluid Flow 27(4), 1602–1622 (2017). https://doi.org/10.1108/HFF-04-2016-0153

    Article  Google Scholar 

  12. Borzacchiello, D., Leriche, E., Blottière, B., Guillet, J.: Three-dimensional finite volume computation of viscoelastic fluid encapsulation by phase-field modeling. J. Non-Newton. Fluid Mech. 200, 52–64 (2013)

    Article  Google Scholar 

  13. Borzacchiello, D., Leriche, E., Blottière, B., Guillet, J.: On the mechanism of viscoelastic encapsulation of fluid layers in polymer coextrusion. J. Rheol. 58(2), 493–512 (2014)

    Article  Google Scholar 

  14. Boucinha, L., Ammar, A., Gravouil, A., Nouy, A.: Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models. Application to transient elastodynamics in space-time domain. Comput. Methods Appl. Mech. Eng. 273, 56–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Capaldo, M., Guidault, P.A., Néron, D., Ladevèze, P.: The reference point method, a hyperreduction technique: application to PGD-based nonlinear model reduction. Comput. Methods Appl. Mech. Eng. 322, 483–514 (2017). https://doi.org/10.1016/j.cma.2017.04.033

    Article  MathSciNet  Google Scholar 

  16. Chapman, T., Avery, P., Collins, P., Farhat, C.: Accelerated mesh sampling for the hyper reduction of nonlinear computational models. Int. J. Numer. Methods Eng. 109(12), 1623–1654 (2017). https://doi.org/10.1002/nme.5332

    Article  MathSciNet  Google Scholar 

  17. Chaturantabut, S., Sorensen, D.: Nonlinear model order reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18(4), 395–404 (2011)

    Article  Google Scholar 

  19. De Lathauwer, L., De Moor, B., Vanderwalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolgov, S., Savostyanov, D.: Alternating minimal energy methods for linear systems in higher dimensions. SIAM J. Sci. Comput. 36(5), A2248–A2271 (2013). https://doi.org/10.1137/140953289

    Article  MathSciNet  MATH  Google Scholar 

  21. Espig, M., Grasedyck, L., Hackbusch, W.: Black box low tensor-rank approximation using fiber-crosses. Constr. Approx. 30, 557–597 (2009). https://doi.org/10.1007/s00365-009-9076-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Falcó, A., Nouy, A.: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach. J. Math. Anal. Appl. 376, 469–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farhat, C., Avery, P., Chapman, T., Cortial, J.: Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency. Int. J. Numer. Methods Eng. 98(9), 625–662 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farhat, C., Chapman, T., Avery, P.: Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int. J. Numer. Methods Eng. 102, 1077–1110 (2015). https://doi.org/10.1002/nme.4820

    Article  MathSciNet  MATH  Google Scholar 

  25. Ghnatios, C., Masson, F., Huerta, A., Leygue, A., Cueto, E., Chinesta, F.: Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput. Methods Appl. Mech. Eng. 213–216, 29–41 (2012)

    Article  Google Scholar 

  26. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques (2013). arXiv:1302.7121

  27. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational Mathematics, 1st edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  28. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009). https://doi.org/10.1007/s00041-009-9094-9

    Article  MathSciNet  MATH  Google Scholar 

  29. Hastad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990). https://doi.org/10.1016/0196-6774(90)90014-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Hernández, J., Caicedo, M., Ferrer, A.: Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. Comput. Methods Appl. Mech. Eng. 313, 687–722 (2017). https://doi.org/10.1016/j.cma.2016.10.022

    Article  MathSciNet  Google Scholar 

  31. Kolda, T., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ladevèze, P., Chamoin, L.: On the verification of model reduction methods based on the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 200(23), 2032–2047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ladevèze, P., Passieux, J.C., Neron, D.: The LATIN multiscale computational method and the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 199(21–22), 1287–1296 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leygue, A., Chinesta, F., Beringhier, M., Nguyen, T., Grandidier, J., Pesavento, F., Schrefler, B.: Towards a framework for non-linear thermal models in shell domains. Int. J. Numer. Methods Heat Fluid Flow 23(1), 55–73 (2013). https://doi.org/10.1108/09615531311289105

    Article  MathSciNet  MATH  Google Scholar 

  35. Maday, Y., Nguyen, N., Patera, A., Pau, S.: A general multipurpose interpolation procedure: the magic points. CPAA 8(1), 383–404 (2009). https://doi.org/10.3934/cpaa.2009.8.383

    Article  MathSciNet  MATH  Google Scholar 

  36. Modesto, D., Zlotnik, S., Huerta, A.: Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation. Comput. Methods Appl. Mech. Eng. (2015). https://doi.org/10.1016/j.cma.2015.03.026

    Article  MathSciNet  MATH  Google Scholar 

  37. Néron, D., Ladevèze, P.: Proper generalized decomposition for multiscale and multiphysics problems. Arch. Comput. Methods Eng. 17(4), 351–372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Model order reduction for hyperelastic materials. Int. J. Numer. Methods Eng. 81(9), 1180–1206 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., Chinesta, F.: Realtime simulation of biological soft tissues: a PGD approach. Int. J. Numer. Methods Biomed. Eng. 29(5), 586–600 (2013)

    Article  MathSciNet  Google Scholar 

  40. Nouy, A.: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199, 1603–1626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oseledets, I., Dolgov, S.: Solution of linear systems and matrix inversion in the TT-format. SIAM J. Sci. Comput. 34(5), A2718–A2739 (2012). https://doi.org/10.1137/110833142

    Article  MathSciNet  MATH  Google Scholar 

  43. Oseledets, I., Savostianov, D., Tyrtyshnikov, E.: Tucker dimensionality reduction of three-dimensional arrays in linear time. SIAM J. Matrix Anal. Appl. 30(3), 939–956 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Oseledets, I., Tyrtyshnikov, E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010). https://doi.org/10.1016/j.laa.2009.07.024

    Article  MathSciNet  MATH  Google Scholar 

  45. Peherstorfer, B., Butnaru, D., Willcox, K., Bungartz, H.: Localized discrete empirical interpolation method. SIAM J. Sci. Comput. 36(1), 168–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Prud’homme, C., Rovas, D., Veroy, K., Machiels, L., Maday, Y., Patera, A., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2001)

    Article  Google Scholar 

  47. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction, 1st edn. Modeling and Simulation in Science, Engineering and Technology. Springer, Basel (2015). https://doi.org/10.1007/978-3-319-15431-2

    Book  Google Scholar 

  48. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations—application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ryckelynck, D.: A priori hypereduction method : an adaptive approach. J. Comput. Phys. 202(1), 346–366 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  50. Tiso, P., Rixen, D.: Discrete Empirical Interpolation Method for Finite Element Structural Dynamics, pp. 203–212. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6570-6-18

    Book  Google Scholar 

  51. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In: Gulliksen, H., Frederiksen, N., Holt, R., Winston, N.Y. (eds.) Contributions to Mathematical Psychology, pp. 110–127 (1964)

  52. Tyrtyshnikov, E.: Incomplete cross approximation in the Mosaic–Skeleton method. Computing 64(4), 367–380 (2000). https://doi.org/10.1007/s006070070031

    Article  MathSciNet  MATH  Google Scholar 

  53. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José V. Aguado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Coefficients Definition for Alternating Directions Optimization

Coefficients \(\beta _*^r\in \mathbb {R}\), \(\tilde{\varvec{\alpha }}_*^r\in \mathbb {R}^{M}\) and \(\tilde{\varvec{\gamma }}_*\in \mathbb {R}^{S}\) in Eq. (10) are defined as follows:

$$\begin{aligned} \begin{aligned} \beta _*^r&:= \prod _{d=0,d\ne *}^{D}{ \langle \mathbf {A}_{d}^r{\varvec{v}}_{d},{\varvec{v}}_{d} \rangle _{{d}}},\\ \tilde{\varvec{\alpha }}_*^r&:= \varvec{\alpha } \,\circ \left( \bigodot _{d=0,d\ne *}^{D}{ \langle \mathbf {A}_{d}^r\mathbf {W}_{d},{\varvec{v}}_{d} \rangle _{{d}} }\right) ^T \quad \text {and}\\ \tilde{\varvec{\gamma }}_*&:= \varvec{\gamma } \,\circ \left( \bigodot _{d=0,d\ne *}^{D}{ \langle \mathbf {V}_{d},{\varvec{v}}_{d} \rangle _{{d}} }\right) ^T, \end{aligned} \end{aligned}$$

where “\(\bullet ^T\)” denotes the transpose and “\(\circ \)” stands for the Hadamard (component-wise) product. Recall that \(\varvec{\alpha }\) contains the representation coefficients of the rank-M approximation of the solution, while \(\varvec{\gamma }\) are the representation coefficients of the rank-S representation of the non-linear term. See Eqs. (6) and (8), respectively.

Using the coefficients defined above, we can define the following quantities:

$$\begin{aligned} \begin{aligned} \tilde{\mathbf {A}}_*:= \sum _{r=1}^{R}{\beta ^r_*\mathbf {A}_*^r} \quad \text {and} \quad \tilde{{\varvec{b}}}_*:= - \sum _{r=1}^{R}{\mathbf {A}_*^r\mathbf {W}_*\tilde{\varvec{\alpha }}_*^r} - \mathbf {V}_*\tilde{\varvec{\gamma }}_*, \end{aligned} \end{aligned}$$

that can be introduced in Eq. (10), leading to the following minimization problem:

$$\begin{aligned} {\varvec{w}}_*= \arg \min _{{\varvec{v}}_*\in \mathbb {R}^{N_*}} \frac{1}{2} \langle \tilde{\mathbf {A}}_*{\varvec{v}}_*,{\varvec{v}}_* \rangle _*+ \langle \tilde{{\varvec{b}}}_*,{\varvec{v}}_* \rangle _*, \end{aligned}$$
(38)

whose solution is \({\varvec{w}}_*= \tilde{\mathbf {A}}_*^{-1}\,\tilde{{\varvec{b}}}_*\).

Appendix B: Fiber Search Algorithm in Detail

Let \(\mathbf {P}:=\bigodot _{d=0}^{D}{\mathbf {P}_d}\in \mathbb {R}^{N\times 1}\) be an extractor matrix, with \(\mathbf {P}_*:= \mathbf {I}\in \mathbb {R}^{N_*\times N_*}\). Additionally, \(\mathbf {P}_d\in \mathbb {R}^{N_d\times 1}\), for \(d\ne *\), are extractor matrices full of zeros, except the entry \(\rho _d\) (see Sect. 4.1), which is equal to one.

The restriction of the approximation residual onto direction “\(*\)” can be written as follows:

$$\begin{aligned} {\varvec{r}}_*:= \mathbf {P}^T({\varvec{f}}({\varvec{u}}_M^\ell ) - {\varvec{f}}_{S}) \equiv {\varvec{f}}(\mathbf {P}^T{\varvec{u}}_M^\ell ) - \mathbf {P}^T{\varvec{f}}_{S}. \end{aligned}$$
(39)

Recalling the definition of both \({\varvec{u}}_M^\ell \) and \({\varvec{f}}_S\), we arrive to:

$$\begin{aligned} {\varvec{r}}_*= {\varvec{f}}(\mathbf {W}_*\,\tilde{\varvec{\alpha }}_*) - \mathbf {V}_*\,\tilde{\varvec{\gamma }}_*, \end{aligned}$$
(40)

where the coefficients \(\tilde{\varvec{\alpha }}_*\in \mathbb {R}^M\) and \(\tilde{\varvec{\gamma }}_*\in \mathbb {R}^{S}\) are defined as follows:

$$\begin{aligned} \begin{aligned} \tilde{\varvec{\alpha }}_*&:= \varvec{\alpha } \,\circ \left( \bigodot _{d=0,d\ne *}^{D}{\mathbf {P}_d^T\mathbf {W}_d} \right) ^T,\quad \text {and}\\ \tilde{\varvec{\gamma }}_*&:= \varvec{\gamma } \,\circ \left( \bigodot _{d=0,d\ne *}^{D}{\mathbf {P}_d^T\mathbf {V}_d} \right) ^T. \end{aligned} \end{aligned}$$

Here “\(\circ \)” stands for the Hadamard (component-wise) product.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguado, J.V., Borzacchiello, D., Kollepara, K.S. et al. Tensor Representation of Non-linear Models Using Cross Approximations. J Sci Comput 81, 22–47 (2019). https://doi.org/10.1007/s10915-019-00917-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00917-2

Keywords

Navigation