Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Local Discontinuous Galerkin Methods for the \(\mu \)-Camassa–Holm and \(\mu \)-Degasperis–Procesi Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop and analyze a series of conservative and dissipative local discontinuous Galerkin (LDG) methods for the \(\mu \)-Camassa–Holm (\(\mu \)CH) and \(\mu \)-Degasperis–Procesi (\(\mu \)DP) equations. The conservative schemes for both two equations can preserve discrete versions of their own first two Hamiltonian invariants, while the dissipative ones guarantee the corresponding stability. The error estimates of both LDG schemes for the \(\mu \)CH equation are given. Comparing with the error estimates for the Camassa–Holm equation, some important tools are used to handle the unexpected terms caused by its particular Hamiltonian invariants. Moreover, a priori error estimates of two LDG schemes for the \(\mu \)DP equation are also proven in detail. Numerical experiments for both equations in different circumstances are provided to illustrate the accuracy and capability of these schemes and give some comparisons about their performance on simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)

    Google Scholar 

  4. Chen, R.M., Lenells, J., Liu, Y.: Stability of the \(\mu \)-Camassa–Holm peakons. J. Nonlinear Sci. 23(1), 97–112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karakashian, O., Xing, Y.: A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20(1), 250–278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khesin, B., Lenells, J., Misiołek, G.: Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342(3), 617–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lenells, J., Misiołek, G., Tiğlay, F.: Integrable evolution equations on spaces of tensor densities and their peakon solutions. Commun. Math. Phys. 299(1), 129–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, H., Xing, Y.: An invariant preserving discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Sci. Comput. 38(4), A1919–A1934 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53(1), 206–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xia, Y.: Fourier spectral methods for Degasperis–Procesi equation with discontinuous solutions. J. Sci. Comput. 61(3), 584–603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xia, Y., Xu, Y.: Weighted essentially non-oscillatory schemes for Degasperis–Procesi equation with discontinuous solutions. Ann. Math. Sci. Appl. 2(2), 319–340 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. Physica D Nonlinear Phenom. 208(1–2), 21–58 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196(37), 3805–3822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, Y., Shu, C.-W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46(4), 1998–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Hunter–Saxton equation and its zero-viscosity and zero-dispersion limits. SIAM J. Sci. Comput. 31(2), 1249–1268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, Y., Shu, C.-W.: Dissipative numerical methods for the Hunter–Saxton equation. J. Comput. Math. 28, 606–620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7(1), 1 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Degasperis–Procesi equation. Commun. Comput. Phys. 10(2), 474–508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, Q., Xia, Y.: Conservative and dissipative local discontinuous Galerkin methods for Korteweg–de Vries type equations. Commun. Comput. Phys. 25(3), 532–563 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Xu: Research supported by NSFC Grant Nos. 11722112, 91630207. Y. Xia: Research supported by NSFC Grant Nos. 11471306, 11871449, and a Grant from the Science and Technology on Reliability and Environmental Engineering Laboratory (No. 6142A0502020817).

Appendix

Appendix

1.1 Proof of the Equivalence of (1.2) and (1.11)

Proof

Notice that

$$\begin{aligned} (A_{\mu }u)_t=\mu (u)_t-u_{xxt} \end{aligned}$$

and

$$\begin{aligned} A_{\mu }\left( \left( \frac{1}{2}u^2\right) _x\right) =-\frac{1}{2}(u^2)_{xxx}=-3u_xu_{xx}-uu_{xxx} \end{aligned}$$

due to the periodicity, then (1.2) can be rewritten as

$$\begin{aligned} A_{\mu }(u_t) + A_{\mu }(uu_x) + 3\mu (u)u_x=0. \end{aligned}$$

Apply the invertible operator \(A^{-1}_{\mu }\) to above equation and take into consideration of \(\mu (u)\) being a conservative quantity, then we have

$$\begin{aligned} u_t + uu_x + 3\mu (u)A^{-1}_{\mu }(u_x)=0. \end{aligned}$$

Comparing the above equation and our desired (1.11), it remains to check the following claim:

$$\begin{aligned} A^{-1}_{\mu }(u_x) = (A^{-1}_{\mu }u)_x. \end{aligned}$$

Set \(v=A^{-1}_{\mu }u\), in other word, \(u=A_{\mu }v=\mu (v)-v_{xx}\). v is obviously periodic like u and we know that \(\mu (v)=\mu (u)\), which means that \(\mu (v)\) is also a conservative quantity. On account of the periodicity and conservation, the mean value \(\mu (v)=\int _{0}^{1} v dx\) is a constant no matter where and when, so we have \(\mu (v)_x=0\); furthermore, owing to the periodicity, we also get \(\mu (v_x)=0\).

Now we apply \(A_{\mu }\) to \(A^{-1}_{\mu }(u_x)-(A^{-1}_{\mu }u)_x\), then

$$\begin{aligned}&A_{\mu }A^{-1}_{\mu }(u_x) - A_{\mu } (A^{-1}_{\mu }u)_x \nonumber \\&\quad = u_x - A_{\mu }(v_x) \nonumber \\&\quad = (A_{\mu }v)_x - A_{\mu }(v_x) \nonumber \\&\quad = (\mu (v)_x-(v_{xx})_x) - (\mu (v_x) -(v_x)_{xx}) \nonumber \\&\quad = \mu (v)_x - \mu (v_x) \nonumber \\&\quad = 0. \end{aligned}$$

Thus we have proven the claim, and further completed the equivalence of (1.11) and (1.2). \(\square \)

1.2 Proof of Lemma 3.7

Proof

By the Proposition 3.2, we know

$$\begin{aligned}&\mu (u_h)_t = 0. \end{aligned}$$

Then by the orthogonality of \(L^2\) projection,

$$\begin{aligned}&s^e = ({\mathcal {P}}^{+}u-u)\perp {\mathbb {P}}^{k-1}, \end{aligned}$$

so

$$\begin{aligned} \int _{I}s^e \cdot 1 dx = 0. \end{aligned}$$

Then we can get \(\mu (s^e)=\mu ({\mathcal {P}}^{+}u)-\mu (u)=0\). In addition to the fact \(\mu (u)_t=0\), we have

$$\begin{aligned}&\mu ({\mathcal {P}}^{+}u)_t=0. \end{aligned}$$

Taking consideration of the definitions of s and \(s^e\), we easily get

$$\begin{aligned}&\frac{d}{dt}\mu (s) \equiv 0,\quad \frac{d}{dt}\mu (s^e)\equiv 0. \end{aligned}$$

\(\square \)

1.3 Proof of Lemma 3.8

Proof

$$\begin{aligned}&\sum _{j=1}^{N}{\mathcal {B}}_{j}(s-s^e,\xi -\xi ^e,v-v^e,\delta -\delta ^e;-s,\delta _t,s,-\delta ,v)\nonumber \\&\qquad =\sum _{j=1}^{N}{\mathcal {B}}_{j}(s,\xi ,v,\delta ;-s,\delta _t,s,-\delta ,v) - \sum _{j=1}^{N}{\mathcal {B}}_{j}(s^e,\xi ^e,v^e,\delta ^e;-s,\delta _t,s,-\delta ,v) \end{aligned}$$
(A.1)

By the same argument as that used for the stability in Proposition 3.2 and on account of the results in Lemma 3.7, the first term of the right-hand side in (A.1) becomes

$$\begin{aligned}&{\mathcal {B}}_j(s,\xi ,v,\delta ;-s,\delta _t,s,-\delta ,v)=\int _{I_j}(\delta _t\delta )dx+\Psi _{j+\frac{1}{2}}-\Psi _{j-\frac{1}{2}}, \end{aligned}$$

where \(\Psi =v^{-}s^{-} - {\widehat{v}}s^{-} -\breve{s}v^{-}+\delta _t^{-}s^{-} - {\widehat{\delta }}_ts^{-} - {\widehat{s}}\delta _t^{-}\).

As to the second term of the right-hand side in (A.1), we have

$$\begin{aligned}&{\mathcal {B}}_{j}(s^e,\xi ^e,v^e,\delta ^e;-s,\delta _t,s,-\delta ,v) \nonumber \\&\quad = \int _{I_j}\delta ^{e}\delta _{t}dx + \int _{I_j}(\delta ^{e}v-v^{e}\delta )dx +\int _{I_j}(\delta _{t}^{e}s_x+s^{e}(\delta _t)_{x}+v^{e}s_{x}+s^{e}v_{x})dx \nonumber \\&\qquad +\left( ({\widehat{v}}^{e}+{\widehat{\delta }}_{t}^{e})[s]\right) _{j-\frac{1}{2}}+\left( {\widehat{s}}^{e}[\delta _{t}]\right) _{j-\frac{1}{2}}+(\breve{s}^e[v])_{j-\frac{1}{2}}+\Phi _{j+\frac{1}{2}}-\Phi _{j-\frac{1}{2}}, \end{aligned}$$
(A.2)

where \(\Phi ={\widehat{v}}^{e}s^{-}-\breve{s}^{e}v^{-}-{\widehat{\delta }}_{t}^{e}s^{-}-{\widehat{s}}^{e}\delta _{t}^{-}\). Because \({\mathcal {P}}\) is a local \(L^2\) projection, and \({\mathcal {P}}^{+}\), although not a local \(L^2\) projection, does have the property that \(s-{\mathcal {P}}^{+}s\) is locally orthogonal to all polynomials of degree up to \(k-1\), we have

$$\begin{aligned}&\int _{I_j}\delta ^{e}\delta _{t}dx + \int _{I_j}(\delta ^{e}v-v^{e}\delta )dx +\int _{I_j}(\delta _{t}^{e}s_x+s^{e}(\delta _t)_{x}+v^{e}s_{x}+s^{e}v_{x})dx =0. \end{aligned}$$

Noticing the special interpolation property of the projection \({\mathcal {P}}^{+}\), we have

$$\begin{aligned}&({\widehat{s}}^{e}[\delta _{t}])_{j-\frac{1}{2}}+(\breve{s}^e[v])_{j-\frac{1}{2}}=0. \end{aligned}$$

Then equation (A.2) becomes

$$\begin{aligned}&{\mathcal {B}}_{j}(s^e,\xi ^e,v^e,\delta ^e;-s,\delta _t,s,-\delta ,v)= \left( ({\widehat{v}}^{e}+{\widehat{\delta }}_{t}^{e})[s]\right) _{j-\frac{1}{2}}+\Phi _{j+\frac{1}{2}}-\Phi _{j-\frac{1}{2}}. \end{aligned}$$

Combining the above equation with (A.1), summing over j, taking into account the periodic boundary condition, we obtain the desired equality (3.47). \(\square \)

1.4 Proof of Lemma 3.9

For the proof of this lemma, we follow the idea of Lemma 3.4 and 3.5 in [19]. For \(f(u)=2\mu (u)u\) in the \(\mu \)CH equation (1.1), we have \(f''(u)=0\) and \(f'''(u)=0\), then we could simplify the proof.

Proof

Review the equality (3.48), and the estimates for every part in the right-hand side of (3.48) is as following

  • Conservative scheme

For the last term, if \({\widehat{f}}\) is chosen as (3.14), we get trivially

$$\begin{aligned}&\sum _{j=1}^{N}\left( \left( f(\{u_h\})-{\widehat{f}}\right) [s]\right) _{j+\frac{1}{2}} = 0, \end{aligned}$$

for the reason that \({\widehat{f}}=\frac{1}{2}\left( f(u_h^+)+f(u_h^-)\right) =2\mu _0(u_h^- + u_h^+)=f(\{u_h\})\).

  • Dissipative scheme

Besides, when \({\widehat{f}}\) is chosen as the Lax-Friedrichs flux (3.15), via the fact \([u_h]=[u_h-u]=[s^e-s]\), we have

$$\begin{aligned}&\sum _{j=1}^{N}\left( \left( f(\{u_h\})-{\widehat{f}}\right) [s]\right) _{j+\frac{1}{2}} = \frac{\alpha }{2}\sum _{j=1}^{N}\left( [u_h][s] \right) _{j+\frac{1}{2}} \\&\quad =\frac{\alpha }{2}\sum _{j=1}^{N}\left( [s^e][s] \right) _{j+\frac{1}{2}}-\frac{\alpha }{2}\sum _{j=1}^{N}\left( [s][s] \right) _{j+\frac{1}{2}}\\&\quad \le -\frac{\alpha }{2}\sum _{j=1}^{N}\left( [s]^2 \right) _{j+\frac{1}{2}} + Ch^{2k+1}, \end{aligned}$$

where \(\alpha =\max \nolimits _{u_h}|f'(u_h)|\ge 0\).

For the other two terms \(\sum _{j=1}^{N}\int _{I_j}(f(u)-f(u_h))s_xdx + \sum _{j=1}^{N}\left( f(u_h)-f((\{u_h\}))[s]\right) _{j+\frac{1}{2}}\), observing that \(f(u)=2\mu (u)u\) where \(\mu (u)\) is conservative, denoting \(C_{\mu }=2\mu (u)\), we can obtain

$$\begin{aligned}&f(u)-f(u_h)=C_{\mu }(s-s^e),\\&f(u)-f(\{u_h\})=C_{\mu }(\{s\}-\{s^e\}), \end{aligned}$$

then

$$\begin{aligned}&\sum _{j=1}^{N}\int _{I_j}(f(u)-f(u_h))s_xdx + \sum _{j=1}^{N}\left( f(u_h)-f((\{u_h\}))[s]\right) _{j+\frac{1}{2}}\nonumber \\&\quad =\sum _{j=1}^{N}\int _{I_j}C_{\mu }ss_xdx+\sum _{j=1}^{N}C_{\mu }(\{s\}[s])_{j+\frac{1}{2}} -\left( \sum _{j=1}^{N}\int _{I_j}C_{\mu }s^es_xdx+\sum _{j=1}^{N}C_{\mu }(\{s^e\}[s])_{j+\frac{1}{2}}\right) \nonumber \\&\quad ={\mathscr {T}}_1+{\mathscr {T}}_2, \end{aligned}$$

where

$$\begin{aligned} {\mathscr {T}}_1&= \sum _{j=1}^{N}\int _{I_j}C_{\mu }ss_xdx+\sum _{j=1}^{N}C_{\mu }(\{s\}[s])_{j+\frac{1}{2}},\\ {\mathscr {T}}_2&= -\left( \sum _{j=1}^{N}\int _{I_j}C_{\mu }s^es_xdx+\sum _{j=1}^{N}C_{\mu }(\{s^e\}[s])_{j+\frac{1}{2}}\right) . \end{aligned}$$

Making further analysis, we can get

$$\begin{aligned} {\mathscr {T}}_1&= C_{\mu }\left( \sum _{j=1}^{N}\int _{I_j}\frac{1}{2}(s^2)_xdx + \sum _{j=1}^{N}\left( \frac{s^+ + s^-}{2}(s^+-s^-)\right) _{j+\frac{1}{2}}\right) =0, \\ {\mathscr {T}}_2&= -C_{\mu }\left( \sum _{j=1}^{N}\int _{I_j}s^es_xdx + \sum _{j=1}^{N}(\{s^e\}[s])_{j+\frac{1}{2}} \right) \nonumber \\&\le C_{\mu }\Vert s^e\Vert \Vert s_x\Vert + C_{\mu } \Vert s^e\Vert _{\Gamma _h} \Vert s\Vert _{\Gamma _h} \nonumber \\&\le C\Vert s\Vert ^2 + Ch^{2k}. \end{aligned}$$

Combining them and we can get the conclusion of Lemma 3.9

$$\begin{aligned}&\sum _{j=1}^{N}{\mathcal {H}}_{j}(f;u,u_h;s) \le C \Vert s\Vert ^{2}+Ch^{2k}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xu, Y. & Xia, Y. Local Discontinuous Galerkin Methods for the \(\mu \)-Camassa–Holm and \(\mu \)-Degasperis–Procesi Equations. J Sci Comput 79, 1294–1334 (2019). https://doi.org/10.1007/s10915-018-0891-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0891-7

Keywords

Navigation