Abstract
This article is concerned with a posteriori error estimates for a discrete-fracture, multidimensional, numerical model for flow in a fractured porous medium. Local residual error estimators are defined and upper and lower bounds in terms of these estimators for both the pressure and the Darcy velocity are derived. Numerical examples using these estimates for automatic grid refinement are given.
Similar content being viewed by others
References
Alboin, C., Jaffré, J., Roberts, J.E., Wang, X., Serres, C.: Domain decomposition for some transmission problems in flow in porous media. In: Chen, Z., Ewing, R.E., Shi, Z.C. (eds.) Numerical Treatment of Multiphase Flows in Porous Media. Lecture Notes in Physics, vol. 552, pp. 22–34. Springer-Verlag, Berlin (2000)
Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385–395 (1996)
Babuvška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)
Barrios, T.P., Behrens, E.M., González, M.: Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity. Appl. Numer. Math. 84, 46–65 (2014)
Bernardi, C., Hecht, F.: Quelques Propriétés d’approximation des éléments Finis de Nédélec, application à l’analyse a Posteriori, vol. 344(7), pp. 461–466. Elsevier, Amsterdam (2007)
Bernardi, C., Hecht, F., Mghazli, Z.: Mortar finite element discretization for the flow in a nonhomogeneous porous medium. Comput. Methods Appl. Mech. Eng. 196(8), 1554–1573 (2007)
Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problemes Aux Limites Elliptiques (Vol, vol. 45. Springer, Berlin (2004)
Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications, vol. 44, pp. 678–685. Springer, Heidelberg (2013)
Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33(6), 2431–2444 (1996)
Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. Am. Math. Soc. 66(218), 465–476 (1997)
Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures*. ESAIM Math. Model. Numer. Anal. 48(4), 1089–1116 (2014)
Frih, N., Martin, V., Roberts, J.E., Saâda, A.: Modeling fractures as interfaces with nonmatching grids. Comput. Geosci. 16(4), 1043–1060 (2012)
Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, 454–464 (2013)
Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer, Berlin (2012)
Glowinski, R., Wheeler, M.F.: Domain decomposition and mixed finite element methods for elliptic problems. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pp. 144–172 (1988)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)
Jaffré, J., Mnejja, M., Roberts, J.E.: A discrete fracture model for two-phase flow with matrix-fracture interaction. Procedia Comput. Sci. 4, 967–973 (2011)
Larson, M.G., Målqvist, A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108(3), 487–500 (2008)
Lions, J.L., Magenes, E.: Problemes aux limites non homogenes et applications. Dunod, Paris (1968)
Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75(256), 1659–1674 (2006)
Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)
Mghazli, Z., Naji, I.: Analyse a posteriori d’erreur par reconstruction pour un modèle d’écoulement dans un milieu poreux fracturé. C. R. Math. 355(3), 304–309 (2017)
Nicaise, S., Creusé, E.: Isotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence forme. Electron. Trans. Numer. Anal. 23, 38–62 (2006)
Roberts, J.E., Thomas, J.-M.: Handbook of Numerical Analysis 2, Finite Element Methods—Part 1, volume 2, Chapter Mixed and Hybrid Methods, pp. 523–639. Elsevier Science Publishers B.V. (North-Holland), Amsterdam (1991)
Schwenck, N., Flemisch, B., Helmig, R., Wohlmuth, B.I.: Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput. Geosci. 19(6), 1219–1230 (2015)
Serres, C., Alboin, C., Jaffre, J., Roberts, J.: Modeling fractures as interfaces for flow and transport in porous media (No. IRSN-DES–497). Inst. de Radioprotection et de Surete Nucleaire (2002)
Verfürth, R.: A Review of a Posteriori Error Estimation. In and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, Amsterdam (1996)
Vohralík, M.: Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods. Math. Comput. 79(272), 2001–2032 (2010)
Wheeler, M.F., Yotov, I.: A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43(3), 1021–1042 (2005)
Wohlmuth, B., Hoppe, R.: A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart–Thomas elements. Math. Comput. Am. Math. Soc. 68(228), 1347–1378 (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the Project HYDRINV-INRIA and PHC Volubilis \(\hbox {N}^0\) MA/10/225.
Rights and permissions
About this article
Cite this article
Hecht, F., Mghazli, Z., Naji, I. et al. A Residual a Posteriori Error Estimators for a Model for Flow in Porous Media with Fractures. J Sci Comput 79, 935–968 (2019). https://doi.org/10.1007/s10915-018-0875-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0875-7