Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Approximate Homogenization of Fully Nonlinear Elliptic PDEs: Estimates and Numerical Results for Pucci Type Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We are interested in the shape of the homogenized operator \(\overline{F}(Q)\) for PDEs which have the structure of a nonlinear Pucci operator. A typical operator is \(H^{a_1,a_2}(Q,x) = a_1(x) \lambda _{\min }(Q) + a_2(x)\lambda _{\max }(Q)\). Linearization of the operator leads to a non-divergence form homogenization problem, which can be solved by averaging against the invariant measure. We estimate the error obtained by linearization based on semi-concavity estimates on the nonlinear operator. These estimates show that away from high curvature regions, the linearization can be accurate. Numerical results show that for many values of Q, the linearization is highly accurate, and that even near corners, the error can be small (a few percent) even for relatively wide ranges of the coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armstrong, S.N., Smart, C.K.: Quantitative stochastic homogenization of elliptic equations in nondivergence form. Arch. Ration. Mech. Anal. 214(3), 867–911 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  3. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence (1995)

    Book  Google Scholar 

  4. Caffarelli, L.A., Glowinski, R.: Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. J. Numer. Math. 16(3), 185–216 (2008)

    Article  MathSciNet  Google Scholar 

  5. Engquist, B., Souganidis, P.E.: Asymptotic and numerical homogenization. Acta Numer. 17, 147–190 (2008)

    Article  MathSciNet  Google Scholar 

  6. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  Google Scholar 

  7. Evans, L.C.: The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb. Sect. A Math. 111(3–4), 359–375 (1989)

    Article  MathSciNet  Google Scholar 

  8. Froese, B.D., Oberman, A.M.: Numerical averaging of non-divergence structure elliptic operators. Commun. Math. Sci. 7(4), 785–804 (2009)

    Article  MathSciNet  Google Scholar 

  9. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

    Article  MathSciNet  Google Scholar 

  10. Finlay, C., Oberman, A.M.: Approximate homogenization of convex nonlinear elliptic PDEs (2017). arXiv preprint arXiv:1710.10309

  11. Gomes, D.A., Oberman, A.M.: Computing the effective Hamiltonian using a variational approach. SIAM J. Control Optim. 43(3), 792–812 (2004)

    Article  MathSciNet  Google Scholar 

  12. Jensen, R.: The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations. Arch. Ration. Mech. Anal. 101(1), 1–27 (1988)

    Article  MathSciNet  Google Scholar 

  13. Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations in a domain. Izvestiya: Mathematics 22(1), 67–97 (1984)

    Article  Google Scholar 

  14. Luo, S., Yifeng, Y., Zhao, H.: A new approximation for effective hamiltonians for homogenization of a class of Hamilton–Jacobi equations. Multiscale Model. Simul. 9(2), 711–734 (2011)

    Article  MathSciNet  Google Scholar 

  15. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006). (electronic)

    Article  MathSciNet  Google Scholar 

  16. Oberman, A.M., Takei, R., Vladimirsky, A.: Homogenization of metric Hamilton–Jacobi equations. Multiscale Model. Simul. 8(1), 269–295 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Oberman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finlay, C., Oberman, A.M. Approximate Homogenization of Fully Nonlinear Elliptic PDEs: Estimates and Numerical Results for Pucci Type Equations. J Sci Comput 77, 936–949 (2018). https://doi.org/10.1007/s10915-018-0730-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0730-x

Keywords

Navigation