Abstract
In this paper, we prove the solution of diffusion equation with imperfect interface is positivity-preserving and a monotone finite volume method is presented to obtain the nonnegative solution on distorted mesh. Motivated by Sheng and Yuan (J Comput Phys 231:3739–3754, 2012), the discrete normal flux on interface is defined by using an extended stencil and introducing two auxiliary points to distinguish the discontinuities of the unknowns on both sides of the interface. The resulting finite volume scheme is locally conservative and has only cell-centered unknowns. Moreover, it is proved to be monotone. The numerical results show that the method obtains second order convergent rate in \(L_2\) norms for solutions on quadrilateral and triangular meshes.
Similar content being viewed by others
References
Adjerid, S., Ben-Romdhane, M., Lin, T.: Higher order immersed finite element methods for second-order elliptic interface problems. Int. J. Numer. Anal. Mod. 11(3), 541–566 (2014)
Babuska, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic prolbems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)
Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)
Burman, E., Hansbo, P.: Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems. SIAM J. Numer. Anal. 30, 870–885 (2010)
Chernogorova, T., Ewing, R.E., Iliev, O., Lazarov, R.: On the Discretization of Interface Problems with Perfect and Imperfect Contact. Lecture Notes in Physics, vol. 552, pp. 93–103. Springer, New York (2000)
Ewing, R., Iliev, O., Lazarow, R.: A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients. SIAM J. Sci. Comput. 23(4), 1335–1351 (2001)
Fogelson, A.L., Keener, J.P.: Immersed interface methods for Neumann and related problems in two and three dimensions. SIAM J. Sci. Comput. 22(5), 1630–1654 (2001)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)
Harari, I., Dolbow, J.: Analysis of an efficient finite element method for embedded interface problems. Comput. Math. 46, 205–211 (2010)
He, X., Lin, T., Lin, Y.: Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J. Syst. Sci. Complex. 23, 467–483 (2010)
He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Part. D. E. 24(5), 1265–1300 (2008)
He, X., Lin, T., Lin, Y., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Part. D. E. 29(2), 619–646 (2013)
Gong, Y., Li, B., Li, Z.: Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions. SIAM J. Numer. Anal. 46(1), 472–495 (2008)
Gong, Y., Li, Z.: Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions. Numer. Math. Theory Methods Appl. 3(1), 23–39 (2010)
He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model 8(2), 284–301 (2011)
Cao, Y., Chu, Y., He, X., et al.: An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity. J. Comput. Phys. 281, 82–95 (2015)
Guzm, J., Schez, M., Sarkis, M.: On the accuracy of finite element approximations to a class of interface problems. Math. Comput. 85(301), 2071–2098 (2016)
Johansen, H., Colella, P.: A cartesian grid embedded boundary method for Poissons equation on irregular domains. J. Comput. Phys. 147, 60–85 (1998)
Latige, M., Colin, T., Gallice, G.: A second order Cartesian finite volume method for elliptic interface and embedded Dirichlet problems. Comput. Fluids 83, 70–76 (2013)
Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings, arXiv preprint arXiv:1509.02762 (2015)
LeVeque, R.J., Li, Z.L.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)
Li, Z.L., Wang, D.S., Zou, Z.: Theoretical and numerical analysis on a thermo-elastic system with discontinuities. J. Comput. Appl. Math. 92, 37–58 (1998)
Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)
Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)
Lin, T., Sheen, D.W., Zhang, X.: Noncomforming immersed finite element methods for elliptic interface problems, arXiv preprint arXiv:1510.00052 (2015)
Li, Z.L., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, Philadelphia (2006)
Li, Z.L.: An overview of the immersed interface method and its application. Taiwan. J. Math. 7, 1–49 (2003)
Li, Z.L., Ito, K.: Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput. 23, 339–361 (2001)
Lpez-Realpozo, J.C., Rodrguez-Ramos, R., Guinovart-Daz, R., et al.: Effective properties of non-linear elastic laminated composites with perfect and imperfect contact conditions. Mech. Adv. Mater. Struct. 15(5), 375–385 (2008)
Mua, L., Wang, J.P., et al.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)
Oevermann, M., Klein, R.: A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces. J. Comput. Phys. 219(2), 749–769 (2006)
Oevermann, M., Scharfenberg, C., Klein, R.: A sharp interface finite volume method for elliptic equations on Cartesian grids. J. Comput. Phys. 228, 5184–5206 (2009)
Peskin, C.S.: Numerical analysis of blood flow in heart. J. Comput. Phys. 25, 220–252 (1977)
Samarskii, A.A., Andreev, V.B.: Differential Method for Elliptic Equations. Nauka, Moscow (1976). [in Russian]
Lipnikov, K., Shashkov, M., Svyatskiy, D., et al.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227(1), 492–512 (2007)
Sheng, Z.Q., Yuan, G.W.: An improved monotone finite volume scheme for diffusion equation on polygonal meshes. J. Comput. Phys. 231, 3739–3754 (2012)
Vallaghfie, S., Papadopoulo, T.: A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J. Sci. Comput. 32(4), 2379–2394 (2010)
Weisz, J.: On an iterative method for the solution of discretized elliptic problems with imperfect contact condition. J. Comput. Appl. Math. 72, 319–333 (1996)
Yuan, G.W., Sheng, Z.Q.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227, 6288–6312 (2008)
Niceno B, Easymesh: a free two-dimensional quality mesh generator based on delaunay triangulation, Available in http://www-dinma.univ.trieste.it/nirftc/research/easymesh/Default.htm, (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is partially supported by the National Natural Science Foundation of China (11571048, 11571047, 11671049), NSAF (U1630249), Science Challenge Project (No. JCKY2016212A502), the Foundation of CAEP (2015B0202042) and the Inner Mongolia Autonomous Region University Scientific Research Project (NJZZ18140).
Rights and permissions
About this article
Cite this article
Cao, F., Sheng, Z. & Yuan, G. Monotone Finite Volume Schemes for Diffusion Equation with Imperfect Interface on Distorted Meshes. J Sci Comput 76, 1055–1077 (2018). https://doi.org/10.1007/s10915-018-0651-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0651-8