Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Monotone Finite Volume Schemes for Diffusion Equation with Imperfect Interface on Distorted Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we prove the solution of diffusion equation with imperfect interface is positivity-preserving and a monotone finite volume method is presented to obtain the nonnegative solution on distorted mesh. Motivated by Sheng and Yuan (J Comput Phys 231:3739–3754, 2012), the discrete normal flux on interface is defined by using an extended stencil and introducing two auxiliary points to distinguish the discontinuities of the unknowns on both sides of the interface. The resulting finite volume scheme is locally conservative and has only cell-centered unknowns. Moreover, it is proved to be monotone. The numerical results show that the method obtains second order convergent rate in \(L_2\) norms for solutions on quadrilateral and triangular meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adjerid, S., Ben-Romdhane, M., Lin, T.: Higher order immersed finite element methods for second-order elliptic interface problems. Int. J. Numer. Anal. Mod. 11(3), 541–566 (2014)

    MATH  Google Scholar 

  2. Babuska, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic prolbems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bramble, J., King, J.: A finite element method for interface problems in domains with smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burman, E., Hansbo, P.: Interior-penalty-stabilized Lagrange multiplier methods for the finite-element solution of elliptic interface problems. SIAM J. Numer. Anal. 30, 870–885 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chernogorova, T., Ewing, R.E., Iliev, O., Lazarov, R.: On the Discretization of Interface Problems with Perfect and Imperfect Contact. Lecture Notes in Physics, vol. 552, pp. 93–103. Springer, New York (2000)

    MATH  Google Scholar 

  6. Ewing, R., Iliev, O., Lazarow, R.: A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients. SIAM J. Sci. Comput. 23(4), 1335–1351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fogelson, A.L., Keener, J.P.: Immersed interface methods for Neumann and related problems in two and three dimensions. SIAM J. Sci. Comput. 22(5), 1630–1654 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)

    MATH  Google Scholar 

  9. Harari, I., Dolbow, J.: Analysis of an efficient finite element method for embedded interface problems. Comput. Math. 46, 205–211 (2010)

    MathSciNet  MATH  Google Scholar 

  10. He, X., Lin, T., Lin, Y.: Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient. J. Syst. Sci. Complex. 23, 467–483 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, X., Lin, T., Lin, Y.: Approximation capability of a bilinear immersed finite element space. Numer. Methods Part. D. E. 24(5), 1265–1300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, X., Lin, T., Lin, Y., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Part. D. E. 29(2), 619–646 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gong, Y., Li, B., Li, Z.: Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions. SIAM J. Numer. Anal. 46(1), 472–495 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gong, Y., Li, Z.: Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions. Numer. Math. Theory Methods Appl. 3(1), 23–39 (2010)

    MathSciNet  MATH  Google Scholar 

  15. He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model 8(2), 284–301 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Cao, Y., Chu, Y., He, X., et al.: An iterative immersed finite element method for an electric potential interface problem based on given surface electric quantity. J. Comput. Phys. 281, 82–95 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guzm, J., Schez, M., Sarkis, M.: On the accuracy of finite element approximations to a class of interface problems. Math. Comput. 85(301), 2071–2098 (2016)

    Article  MathSciNet  Google Scholar 

  18. Johansen, H., Colella, P.: A cartesian grid embedded boundary method for Poissons equation on irregular domains. J. Comput. Phys. 147, 60–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Latige, M., Colin, T., Gallice, G.: A second order Cartesian finite volume method for elliptic interface and embedded Dirichlet problems. Comput. Fluids 83, 70–76 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings, arXiv preprint arXiv:1509.02762 (2015)

  21. LeVeque, R.J., Li, Z.L.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Z.L., Wang, D.S., Zou, Z.: Theoretical and numerical analysis on a thermo-elastic system with discontinuities. J. Comput. Appl. Math. 92, 37–58 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Z., Lin, T., Wu, X.: New Cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96(1), 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53(2), 1121–1144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, T., Sheen, D.W., Zhang, X.: Noncomforming immersed finite element methods for elliptic interface problems, arXiv preprint arXiv:1510.00052 (2015)

  26. Li, Z.L., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  27. Li, Z.L.: An overview of the immersed interface method and its application. Taiwan. J. Math. 7, 1–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Z.L., Ito, K.: Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput. 23, 339–361 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lpez-Realpozo, J.C., Rodrguez-Ramos, R., Guinovart-Daz, R., et al.: Effective properties of non-linear elastic laminated composites with perfect and imperfect contact conditions. Mech. Adv. Mater. Struct. 15(5), 375–385 (2008)

    Article  Google Scholar 

  30. Mua, L., Wang, J.P., et al.: Weak Galerkin methods for second order elliptic interface problems. J. Comput. Phys. 250, 106–125 (2013)

    Article  MathSciNet  Google Scholar 

  31. Oevermann, M., Klein, R.: A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces. J. Comput. Phys. 219(2), 749–769 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oevermann, M., Scharfenberg, C., Klein, R.: A sharp interface finite volume method for elliptic equations on Cartesian grids. J. Comput. Phys. 228, 5184–5206 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peskin, C.S.: Numerical analysis of blood flow in heart. J. Comput. Phys. 25, 220–252 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. Samarskii, A.A., Andreev, V.B.: Differential Method for Elliptic Equations. Nauka, Moscow (1976). [in Russian]

    MATH  Google Scholar 

  35. Lipnikov, K., Shashkov, M., Svyatskiy, D., et al.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227(1), 492–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sheng, Z.Q., Yuan, G.W.: An improved monotone finite volume scheme for diffusion equation on polygonal meshes. J. Comput. Phys. 231, 3739–3754 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vallaghfie, S., Papadopoulo, T.: A trilinear immersed finite element method for solving the electroencephalography forward problem. SIAM J. Sci. Comput. 32(4), 2379–2394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Weisz, J.: On an iterative method for the solution of discretized elliptic problems with imperfect contact condition. J. Comput. Appl. Math. 72, 319–333 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan, G.W., Sheng, Z.Q.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227, 6288–6312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Niceno B, Easymesh: a free two-dimensional quality mesh generator based on delaunay triangulation, Available in http://www-dinma.univ.trieste.it/nirftc/research/easymesh/Default.htm, (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Yuan.

Additional information

This work is partially supported by the National Natural Science Foundation of China (11571048, 11571047, 11671049), NSAF (U1630249), Science Challenge Project (No. JCKY2016212A502), the Foundation of CAEP (2015B0202042) and the Inner Mongolia Autonomous Region University Scientific Research Project (NJZZ18140).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, F., Sheng, Z. & Yuan, G. Monotone Finite Volume Schemes for Diffusion Equation with Imperfect Interface on Distorted Meshes. J Sci Comput 76, 1055–1077 (2018). https://doi.org/10.1007/s10915-018-0651-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0651-8

Keywords

Navigation