Abstract
Linear eigenvalue analysis has provided a fundamental framework for many scientific and engineering disciplines. Consequently, vast research was devoted to numerical schemes for computing eigenfunctions. In recent years, new research in image processing and machine-learning has shown the applicability of nonlinear eigenvalue analysis, specifically based on operators induced by convex functionals. This has provided new insights, better theoretical understanding and improved image-processing, clustering and classification algorithms. However, the theory of nonlinear eigenvalue problems is still very preliminary. We present a new class of nonlinear flows that can generate nonlinear eigenfunctions of the form \(T(u)=\lambda u\), where T(u) is a nonlinear operator and \(\lambda \in \mathbb {R} \) is the eigenvalue. We develop the theory where T(u) is a subgradient element of a regularizing one-homogeneous functional, such as total-variation or total-generalized-variation. We focus on a forward flow which simultaneously smooths the solution (with respect to the regularizer) while increasing the 2-norm. An analog discrete flow and its normalized version are formulated and analyzed. The flows translate to a series of convex minimization steps. In addition we suggest an indicator to measure the affinity of a function to an eigenfunction and relate it to pseudo-eigenfunctions in the linear case.
Similar content being viewed by others
References
Appell, J., De Pascale, E., Vignoli, A.: Nonlinear spectral theory, vol. 10. Walter de Gruyter, Berlin (2004)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. Math. Program. 137, 91–129 (2013)
Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68, 925–946 (2008)
Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition—modeling, algorithms, and parameter selection. Int. J. Comput. Vision 67, 111–136 (2006)
Aujol, J.-F., Gilboa, G., Papadakis, N.: Theoretical analysis of flows estimating eigenfunctions of one-homogeneous functionals for segmentation and clustering. Preprint. HAL-01563922. (2017)
Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in r n. J. Differ. Equ. 184, 475–525 (2002)
Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order tv methodsenhancement via bregman iteration. J. Sci. Comput. 54, 269–310 (2013)
Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Methods Appl. Anal. 20, 295–334 (2013)
Börm, S., Mehl, C.: Numerical Methods for Eigenvalue Problems. Walter de Gruyter, Berlin (2012)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)
Bresson, X., Laurent, T., Uminsky, D., Brecht, J.: Convergence and energy landscape for cheeger cut clustering. In: Advances in Neural Information Processing Systems, pp. 1385–1393 (2012)
Bresson, X., Laurent, T., Uminsky, D., Von Brecht, J.: Multiclass total variation clustering. In: Advances in Neural Information Processing Systems, pp. 1421–1429 (2013)
Bresson, X., Szlam, A.: Total variation, cheeger cuts. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 1039–1046 (2010)
Bresson, X., Tai, X.-C., Chan, T.F., Szlam, A.: Multi-class transductive learning based on 1 relaxations of Cheeger cut and Mumford-Shah-Potts model. J. Math. Imaging Vis. 49, 191–201 (2014)
Brinkmann, E.-M., Burger, M., Rasch, J., Sutour, C.: Bias-reduction in variational regularization, arXiv preprint arXiv:1606.05113 (2016)
Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals, arXiv preprint arXiv:1601.02912 (2016)
Burger, M., Gilboa, G., Osher, S., Xu, J., et al.: Nonlinear inverse scale space methods. Commun. Math. Sci. 4, 179–212 (2006)
Burger, M., He, L., Schönlieb, C.-B.: Cahn–Hilliard inpainting and a generalization for grayvalue images. SIAM J. Imaging Sci. 2, 1129–1167 (2009)
Burger, M., Osher, S.: A guide to the tv zoo. In: Level Set and PDE Based Reconstruction Methods in Imaging, Springer, pp. 1–70 (2013)
Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)
Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recovery 9, 227 (2010)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)
Chatelin, F.: The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators. SIAM Rev. 23, 495–522 (1981)
Cuppen, J.J.M.: A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195 (1980)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)
Deledalle, C.-A., Papadakis, N., Salmon, J.: On debiasing restoration algorithms: applications to total-variation and nonlocal-means. In: International Conference on Scale Space and Variational Methods in Computer Vision, Springer, pp. 129–141 (2015)
Dong, B., Ji, H., Li, J., Shen, Z., Xu, Y.: Wavelet frame based blind image inpainting. Appl. Comput. Harmonic Anal. 32, 268–279 (2012)
Ekeland, I., Temam, R.: Convex Analysis and 9 Variational Problems. SIAM, New Delhi (1976)
Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17, 1047–1060 (2008)
Francis, J.G.F.: The qr transformation a unitary analogue to the lr transformationpart 1. Comput. J. 4, 265–271 (1961)
Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7, 1937–1961 (2014)
Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2009)
Hein, M., Bühler, T.: An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse pca. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 847–855. Curran Associates, Inc., New York (2010)
Jung, M., Peyré, G., Cohen, L.D.: Nonlocal active contours. SIAM J. Imaging Sci. 5, 1022–1054 (2012)
Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4, 1091–1115 (2005)
Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65, 480–491 (2011)
Landau, H.J.: On Szegö’s eingenvalue distribution theorem and non-hermitian kernels. Journal d’Analyse Mathématique 28, 335–357 (1975)
Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: International Conference on Scale Space and Variational Methods in Computer Vision, Springer, pp. 150–162 (2009)
Louchet, C., Moisan, L.: Total variation as a local filter. SIAM J. Imaging Sci. 4, 651–694 (2011)
Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations, March 2001. The 15th Dean Jacquelines B. Lewis Memorial Lectures. (2001)
Papafitsoros, K., Bredies, K.: A study of the one dimensional total generalised variation regularisation problem. arXiv preprint arXiv:1309.5900 (2013)
Pöschl, C., Scherzer, O.: Exact solutions of one-dimensional tgv. arXiv preprint arXiv:1309.7152 (2013)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)
Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied Mathematics, Philadelphia (2011)
Sawatzky, A., Tenbrinck, D., Jiang, X., Burger, M.: A variational framework for region-based segmentation incorporating physical noise models. J. Math. Imaging Vis. 47, 179–209 (2013)
Schmaltz, C., Rosenhahn, B., Brox, T., Weickert, J.: Region-based pose tracking with occlusions using 3d models. Mach. Vis. Appl. 23, 557–577 (2012)
Schmidt, M.F., Benning, M., Schönlieb, C.-B.: Inverse scale space decomposition, arXiv preprint arXiv:1612.09203 (2016)
Trefethen, L.N.: Approximation theory and numerical linear algebra. In: Algorithms for approximation II, Springer, pp. 336–360 (1990)
Trefethen, L.N.: Pseudospectra of matrices. Numer. Anal 91, 234–266 (1991)
Trefethen, L.N., Bau III, D.: Numerical Linear Algebra, vol. 50. Siam, New Delhi (1997)
Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)
Varah, J.M.: On the separation of two matrices. SIAM J. Numer. Anal. 16, 216–222 (1979)
Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in pde-based computation of image motion. Int. J. Comput. Vis. 45, 245–264 (2001)
Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 21, pp. 1753–1760. Curran Associates, Inc., New York (2009)
Werlberger, M., Pock, T., Unger, M., Bischof, H.: Optical flow guided tv-l1 video interpolation and restoration. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, pp. 273–286 (2011)
Wilkinson, J.H., Wilkinson, J.H.: The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press, Oxford (1965)
Yang, M., Liang, J., Zhang, J., Gao, H., Meng, F., Xingdong, L., Song, S.-J.: Non-local means theory based perona-malik model for image denosing. Neurocomputing 120, 262–267 (2013)
Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, IEEE, pp. 479–486 (2011)
Acknowledgements
We would like to thank Martin Benning, Nicolas Papadakis and Jean-Francois Aujol for stimulating discussions and helpful comments. We would further like to thank the two anonymous reviewers for their suggestions. We acknowledge support by the Israel Science Foundation (Grant No. 718/15).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nossek, R.Z., Gilboa, G. Flows Generating Nonlinear Eigenfunctions. J Sci Comput 75, 859–888 (2018). https://doi.org/10.1007/s10915-017-0577-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0577-6