Abstract
In this paper, we give a numerical analysis for the transmission eigenvalue problem by the finite element method. A type of multilevel correction method is proposed to solve the transmission eigenvalue problem. The multilevel correction method can transform the transmission eigenvalue solving in the finest finite element space to a sequence of linear problems and some transmission eigenvalue solving in a very low dimensional spaces. Since the main computational work is to solve the sequence of linear problems, the multilevel correction method improves the overfull efficiency of the transmission eigenvalue solving. Some numerical examples are provided to validate the theoretical results and the efficiency of the proposed numerical scheme.
Similar content being viewed by others
References
An, J., Shen, J.: A spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57(3), 670–688 (2013)
Babuška, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)
Babuška, I., Osborn, J. E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (ed.) Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), pp. 641–787. North-Holland, Amsterdam (1991)
Bonnet-Ben Dhia, A.S., Chesnel, L., Haddar, H.: On the use of \({\mathbb{T}}\)-coercivity to study the interior transmission eigenvalue problem. C. R. Acad. Sci. Paris Ser. I 349, 647–651 (2011)
Bonnet-Ben Dhia, A.S., Chesnel, L., Ciarlet, P.J.: \({\mathbb{T}}\)-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM: M2AN 46, 1363–1387 (2012)
Bonnet-Ben Dhia, A.S., Ciarlet, P.J., Zwölf, C.M.: Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234, 1912–1919 (2010)
Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)
Chesnel, L., Ciarlet, P.J.: \({\mathbb{T}}\)-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124, 1–29 (2013)
Cakoni, F., ÇAyören, M., Colton, D.: Transmission eigenvalues and the nondestructive testing of dielectrics. Inverse Probl. 24, 065016 (2008)
Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl. 26, 074004 (2010)
Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)
Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. In: Uhlmann G. (ed.) Inside Out II, vol. 60, pp. 526–578. MSRI Publications (2012)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics Appl. Math., vol. 40. SIAM Philadelphia (2002)
Ciarlet, P.J.: \({\mathbb{T}}\)-coercivity: application to the discretization of Helmholtz-like problems. Comput. Math. Appl. 64, 22–34 (2012)
Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, New York (1998)
Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26, 045011 (2010)
Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1, 13–28 (2007)
Hsiao, G., Liu, F., Sun, J., Xu, L.: A coupled BEM and FEM for the interior transmission problem in acoustics. J. Comput. Appl. Math. 235, 5213–5221 (2011)
Ji, X., Sun, J.: A multi-level method for transmission eigenvalues of anisotropic media. J. Comput. Phys. 255, 422–435 (2013)
Ji, X., Sun, J., Turner, T.: A mixed finite element method for Helmholtz Transmission eigenvalues. In: ACM Transactions on Mathematical Software, vol. 38, Algorithm 922 (2012)
Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60(2), 276–294 (2014)
Kirsch, K.: On the existence of transmission eigenvalues. Inverse Probl. Imaging 3, 155–172 (2009)
Lin, Q., Xie, H.: A multilevel correction type of adaptive finite element method for Steklov eigenvalue problem. In: Proceedings of the International Conference Applications of Mathematics (2012)
Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84, 71–88 (2015)
Päivärinta, L., Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40, 738–753 (2008)
Shaidurov, V.: Multigrid Methods for Finite Element. Kluwer Academic Publics, Netherlands (1995)
Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Probl. 27, 015009 (2011)
Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 1860–1874 (2011)
Wu, X., Chen, W.: Error estimates of the finite element method for interior transmission problems. J. Sci. Comput. 57(2), 331–348 (2013)
Xie, H.: A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods. BIT Numer. Math. (2015). doi:10.1007/s10543-015-0545-1
Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)
Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)
Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)
Acknowledgements
The work of Hehu Xie is supported in part by the National Natural Science Foundations of China (NSFC 91330202, 11371026, 11001259, 11031006, 2011CB309703), Science Challenge Project (No. JCKY2016212A502), the National Center for Mathematics and Interdisciplinary Science, CAS. The work of Xinming Wu is supported in part by the National Natural Science Foundations of China (NSFC 91330202, 11301089).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xie, H., Wu, X. A Multilevel Correction Method for Interior Transmission Eigenvalue Problem. J Sci Comput 72, 586–604 (2017). https://doi.org/10.1007/s10915-017-0367-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-017-0367-1