Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Multilevel Correction Method for Interior Transmission Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we give a numerical analysis for the transmission eigenvalue problem by the finite element method. A type of multilevel correction method is proposed to solve the transmission eigenvalue problem. The multilevel correction method can transform the transmission eigenvalue solving in the finest finite element space to a sequence of linear problems and some transmission eigenvalue solving in a very low dimensional spaces. Since the main computational work is to solve the sequence of linear problems, the multilevel correction method improves the overfull efficiency of the transmission eigenvalue solving. Some numerical examples are provided to validate the theoretical results and the efficiency of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An, J., Shen, J.: A spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57(3), 670–688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52, 275–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Osborn, J. E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (ed.) Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), pp. 641–787. North-Holland, Amsterdam (1991)

  4. Bonnet-Ben Dhia, A.S., Chesnel, L., Haddar, H.: On the use of \({\mathbb{T}}\)-coercivity to study the interior transmission eigenvalue problem. C. R. Acad. Sci. Paris Ser. I 349, 647–651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonnet-Ben Dhia, A.S., Chesnel, L., Ciarlet, P.J.: \({\mathbb{T}}\)-coercivity for scalar interface problems between dielectrics and metamaterials. ESAIM: M2AN 46, 1363–1387 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonnet-Ben Dhia, A.S., Ciarlet, P.J., Zwölf, C.M.: Time harmonic wave diffraction problems in materials with sign-shifting coefficients. J. Comput. Appl. Math. 234, 1912–1919 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  8. Chesnel, L., Ciarlet, P.J.: \({\mathbb{T}}\)-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients. Numer. Math. 124, 1–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cakoni, F., ÇAyören, M., Colton, D.: Transmission eigenvalues and the nondestructive testing of dielectrics. Inverse Probl. 24, 065016 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl. 26, 074004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. In: Uhlmann G. (ed.) Inside Out II, vol. 60, pp. 526–578. MSRI Publications (2012)

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics Appl. Math., vol. 40. SIAM Philadelphia (2002)

  14. Ciarlet, P.J.: \({\mathbb{T}}\)-coercivity: application to the discretization of Helmholtz-like problems. Comput. Math. Appl. 64, 22–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  16. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26, 045011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1, 13–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsiao, G., Liu, F., Sun, J., Xu, L.: A coupled BEM and FEM for the interior transmission problem in acoustics. J. Comput. Appl. Math. 235, 5213–5221 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji, X., Sun, J.: A multi-level method for transmission eigenvalues of anisotropic media. J. Comput. Phys. 255, 422–435 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji, X., Sun, J., Turner, T.: A mixed finite element method for Helmholtz Transmission eigenvalues. In: ACM Transactions on Mathematical Software, vol. 38, Algorithm 922 (2012)

  21. Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60(2), 276–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirsch, K.: On the existence of transmission eigenvalues. Inverse Probl. Imaging 3, 155–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, Q., Xie, H.: A multilevel correction type of adaptive finite element method for Steklov eigenvalue problem. In: Proceedings of the International Conference Applications of Mathematics (2012)

  24. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84, 71–88 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Päivärinta, L., Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40, 738–753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shaidurov, V.: Multigrid Methods for Finite Element. Kluwer Academic Publics, Netherlands (1995)

    Book  MATH  Google Scholar 

  27. Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Probl. 27, 015009 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, X., Chen, W.: Error estimates of the finite element method for interior transmission problems. J. Sci. Comput. 57(2), 331–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xie, H.: A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods. BIT Numer. Math. (2015). doi:10.1007/s10543-015-0545-1

  31. Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Hehu Xie is supported in part by the National Natural Science Foundations of China (NSFC 91330202, 11371026, 11001259, 11031006, 2011CB309703), Science Challenge Project (No. JCKY2016212A502), the National Center for Mathematics and Interdisciplinary Science, CAS. The work of Xinming Wu is supported in part by the National Natural Science Foundations of China (NSFC 91330202, 11301089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Wu, X. A Multilevel Correction Method for Interior Transmission Eigenvalue Problem. J Sci Comput 72, 586–604 (2017). https://doi.org/10.1007/s10915-017-0367-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0367-1

Keywords

Mathematics Subject Classification

Navigation