Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Convergence Analysis of Two Numerical Schemes Applied to a Nonlinear Elliptic Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For a given nonlinear problem discretized by standard finite elements, we propose two iterative schemes to solve the discrete problem. We prove the well-posedness of the corresponding problems and their convergence. Next, we construct error indicators and prove optimal a posteriori estimates where we treat separately the discretization and linearization errors. Some numerical experiments confirm the validity of the schemes and allow us to compare them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Acadamic Press, INC (1978)

    MATH  Google Scholar 

  2. Bernardi, C., Dakroub, J., Mansour, G., Sayah, T.: A posteriori analysis of iterative algorithms for a nonlinear problem. J. Sci. Comput. 65(2), 672–697 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaillou, A.-L., Suri, M.: Computable error estimators for the approximation of nonlinear problems by linearized models. Comput. Methods Appl. Mech. Eng. 196, 210–224 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chaillou, A.-L., Suri, M.: A posteriori estimation of the linearization error for strongly monotone nonlinear operators. Comput. Methods Appl. Mech. Eng. 205, 72–87 (2007)

    MathSciNet  MATH  Google Scholar 

  5. El Alaoui, L., Ern, A., Vohralík, M.: Guaranteed and robust a posteriori error estimate and balancing discretization and linearization errore for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200, 2782–2795 (2011)

    Article  MATH  Google Scholar 

  6. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–266 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Verfürth, R.: A Posteriori Error Estimation Techniques For Finite Element Methods. Numerical Mathematics and Scientific Computation, Oxford (2013)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toni Sayah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardi, C., Dakroub, J., Mansour, G. et al. Convergence Analysis of Two Numerical Schemes Applied to a Nonlinear Elliptic Problem. J Sci Comput 71, 329–347 (2017). https://doi.org/10.1007/s10915-016-0301-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0301-y

Keywords

Navigation