Abstract
The popular total variation (TV) model for image restoration (Rudin et al. in Phys D 60(1–4):259-268, 1992) can be formulated as a Maximum A Posteriori estimator which uses a half-Laplacian image-independent prior favoring sparse image gradients. We propose a generalization of the TV prior, referred to as TV\(_p\), based on a half-generalized Gaussian distribution with shape parameter p. An automatic estimation of p is introduced so that the prior better fits the real images’ gradient distribution; we will show that, in general, the estimated p value does not necessarily require to be close to zero. The restored image is computed by using an alternating directions methods of multipliers procedure. In this context, a novel result in multivariate proximal calculus is presented which allows for the efficient solution of the proposed model. Numerical examples show that the proposed approach is particularly efficient and well suited for images characterized by a wide range of gradient distributions.
Similar content being viewed by others
References
Buades, A., Coll, B., Morel, J.M.: The staircasing effect in neighborhood filters and its solution. IEEE Trans. Image Process. 15, 1499–1505 (2006)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–22 (2011)
Chan, R.H., Tao, M., Yuan, X.M.: Constrained total variational deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6, 680–697 (2013)
Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of textured images using fractional order regularization. Numer. Math. Theory Methods Appl. (NMTMA) 6(1), 276–296 (2013)
Chan, T., Esedoglu, S., Park, F., Yip, A.: Total variation image restoration. Overview and recent developments. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 17–31. Springer, New York (2006)
Cho, T.S., Zitnick, C.L., Joshi, N., Kang, S.B., Szeliski, R., Freeman, W.T.: Image restoration by matching gradient distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34/4, 683–694 (2012)
Christiansen, M., Hanke, M.: Deblurring methods using antireflective boundary conditions. SIAM J. Sci. Comput. 30, 855–872 (2008)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)
Gray, R.M., Davisson, L.D.: An Introduction to Statistical Signal Processing. Cambridge University Press, Cambridge (2010)
Hong, M., Luo, Z., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems (2014). Preprint, arXiv:1410.1390
He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas–Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)
Keren, D., Werman, M.: Probabilistic analysis of regularization. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 982–995 (1993)
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22, pp. 1033–1041 (2009)
Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci. 6(2), 938–983 (2013)
Liu, R.W., Xu, T.: A robust alternating direction method for constrained hybrid variational deblurring model. arXiv:1309.0123v2 (2013)
Nikolova, M., Ng, M.K., Zhang, S., Ching, W.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)
Nikolova, M., Ng, M., Tam, C.: Software is available at http://www.math.hkbu.edu.hk/~mng/imaging-software.html
Nikolova, M., Ng, M.K., Tam, C.-P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. Trans. Imaging Proc. 19(12), 3073–3088 (2010)
Ng, M.K., Chan, R.H., Tang, W.C.: A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (1999)
Rodriguez, P., Wohlberg, B.: Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Process. 18, 2(322-332) (2009)
Rodrguez, P.: Multiplicative updates algorithm to minimize the generalized total variation functional with a non-negativity constraint. In: Proceedings of the IEEE international conference on image processing (ICIP), (Hong Kong), pp. 2509–2512 (2010)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)
Saquib, S.S., Bouman, C.A., Sauer, K.: ML parameter estimation for Markov random fields with applications to Bayesian tomography. IEEE Trans. Image Process. 7(7), 1029–1044 (1998)
Sha, F., Lin, Y., Saul, L., Lee, D.: Multiplicative updates for nonnegative quadratic programming. Neural Comput. 19(8), 2004–2031 (2007)
Sidky, E.Y., Chartrand, R., Boone, J.M., Pan, X.: Constrained \(T_p\) V minimization for enhanced exploitation of gradient sparsity: application to CT image reconstruction. IEEE J. Transl. Eng. Health Med. 2, 1–18 (2014). doi:10.1109/JTEHM.2014.2300862
Song, K.-S.: A globally convergent and consistent method for estimating the shape parameter of a generalized gaussian distribution. IEEE Trans. Inf. Theory 52(2), 510–527 (2006)
Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19, 165–187 (2003)
Tao, M., Yang, J.: Alternating direction algorithm for total variation deconvolution in image reconstruction. Department of Mathematics, Nanjing University, Tech. Rep. TR0918 (2009)
Varanasi, M., Aazhang, B.: Parametric generalized Gaussian density estimation. J. Acoust. Soc. Am. 86(4), 1404–1414 (1989)
Vogel, C., Oman, M.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1–4), 227–238 (1996)
Wen, Y., Chan, R.H.: Parameter selection for total variation based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)
Yan, J., Lu, W.-S.: Image denoising by generalized total variation regularization and least squares fidelity. J. Multidimens. Syst. Signal Process. 26(1), 243–266 (2015)
Yu, S., Zhang, A., Li, H.: A review of estimating the shape parameter of generalized Gaussian distribution. J. Comput. Inf. Syst. 8(21), 9055–9064 (2012)
Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report 08-34, (2007)
Zuo, W., Meng, D., Zhang, L., Feng, X., Zhang, D.: A generalized iterated shrinkage algorithm for non-convex sparse coding. In: IEEE international conference on computer vision (ICCV), pp. 217–224 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lanza, A., Morigi, S. & Sgallari, F. Constrained TV\(_p\)-\(\ell _2\) Model for Image Restoration. J Sci Comput 68, 64–91 (2016). https://doi.org/10.1007/s10915-015-0129-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0129-x