Abstract
A postprocessing technique for mixed finite element methods for the Cahn–Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on a coarser space, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which many fast Poisson solvers can be applied. The nonlinear iteration is only applied to a much smaller size problem and the computational cost using Newton and direct solvers is negligible compared with the cost of the linear problem. The analysis presented here shows that this technique remains the optimal rate of convergence for both the concentration and the chemical potential approximations. The corresponding error estimate obtained in our paper, especially the negative norm error estimates, are non-trivial and different with the existing results in the literatures.
Similar content being viewed by others
References
Aristotelous, A.C., Karakshian, O., Wise, S.M.: A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discret. Cont. Dyn. Syst. 18, 2211–2238 (2013)
Ayuso, B., Garcia-Archilla, B., Novo, J.: The postprocessed mixed finite element method for the Navier–Stokes equations. SIAM J. Numer. Anal. 43, 1091–1111 (2005)
Ayuso, B., De Frutos, J., Novo, J.: Improving the accuracy of the mini-element approximation to Navier–Stokes equations. IMA J. Numer. Anal. 27, 198–218 (2007)
Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system I: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)
Chen, L.: iFEM: An integrated finite element methods package in MATLAB. Technical report, University of California at Irvine (2009)
Chen, F., Shen, J.: Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems. Comm. Comput. Phys. 13, 1189–1208 (2013)
Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math. Comput. 18, 113–126 (2005)
Elliott, C.M., Songmu, Zheng: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357 (1986)
Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54, 575–590 (1989)
Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation. Math. Comput. 58, 603–630 (1992)
Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 529, 39 (2011)
Feng, X., Prohl, A.: Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comput. 73, 541–567 (2004)
Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99, 47–84 (2004)
Feng, X., Karakashian, O.A.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hillard equation of phase transition. Math. Comput. 76, 1093–1117 (2007)
de Frutos, J., Garcia-Archilla, B., Novo, J.: A postprocessed Galerkin method with Chebyshev or Legendre polynomials. Numer. Math. 86, 419–442 (2000)
de Frutos, J., Novo, J.: A spectral element method for the Navier–Stokes equations with improved accuracy. SIAM J. Numer. Math. 38, 799–819 (2000)
de Frutos, J., Novo, J.: A postprocess based improvement of the spectral element method. Appl. Numer. Math. 33, 217–223 (2000)
de Frutos, J., Novo, J.: Postprocessing the linear finite element method. SIAM J. Numer. Math. 40, 805–819 (2002)
de Frutos, J., Garcia-Archilla, B., Novo, J.: The postprocessed mixed finite element method for the Navier–Stokes equations: improved error bounds. SIAM J. Numer. Math. 46, 201–230 (2007)
de Frutos, J., Garcia-Archilla, B., Novo, J.: Postprocessing finite element method for the Navier–Stokes equations: the fully discrete case. SIAM J. Numer. Math. 47, 596–621 (2008)
de Frutos, J., Garcia-Archilla, B., Novo, J.: Nonlinear convection–diffusion problems: fully discrete approximations and a posteriori error estimates. IMA J. Numer. Math. 30, 1402–1430 (2011)
de Frutos, J., Garcia-Archilla, B., Novo, J.: Static two-grid mixed finite element approximations to the Navier–Stokes equations. J. Sci. Comput. 52, 619–637 (2012)
Garcia-Archilla, B., Novo, J., Titi, E.S.: Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35, 941–942 (1998)
Garcia-Archilla, B., Novo, J., Titi, E.S.: An approximate inertial manifolds approach to postprocessing the Galerkin method for the Navier–Stokes equations. Math. Comput. 68, 893–911 (1999)
Garcia-Archilla, B., Titi, E.S.: Postprocessing the Galerkin method: the finite element case. SIAM J. Numer. Anal. 37, 470–499 (2000)
He, L.-P., Liu, Y.: A class of stable spectral methods for the Cahn–Hilliard equation. J. Comput. Phys. 228, 5101–5110 (2009)
He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)
He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35(2), 767–801 (2015)
Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem, IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)
Hu, Z., Wise, S., Wang, C., Lowengrub, J.: Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation. J. Comput. Phys. 228, 5323–5339 (2009)
Kay, D., Styles, V., Suli, E.: Discontinuous Galerkin finite element approximation of the Cahn–Hilliard equation. Appl. Numer. Math. 57, 616–628 (2007)
Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193, 511–543 (2004)
Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12, 613–661 (2012)
Marion, M., Xu, J.: Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32(4), 1170–1184 (1995)
Nocick-Cohen, A.: The Cahn–Hilliard equation. In: Dafermose, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 4. Elsevier, Amsterdam (2008)
Schatz, A.H., Wahlbin, L.B.: On the quasi-optimality in \(L^\infty \) of the \(\dot{H}_1\)-projection into finite element spaces. Math. Comput. 38, 1–21 (1982)
Shen, J., Yang, X.F.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Cont. Dyn. Syst. 28, 1669–1691 (2010)
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)
Wahlbin, L.B.: Superconvergence in Galerkin finite element methods. Lect. Notes Math. 1605. Springer, Berlin (1995)
Wang, M., Xu, J.: Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comput. 76, 1–18 (2007)
Wells, G.N., Kuhl, E., Garikipati, K.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Comput. Phys. 218, 860–877 (2006)
Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)
Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn–Hilliard–Hele–Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)
Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227, 472–491 (2007)
Xu, J.: A novel two-grid method for semi-linear equations. SIAM J. Sci. Comput. 15, 231–237 (1994)
Xu, J.: Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33, 1759–1777 (1996)
Yan, Y.: Postprocessing the finite element-method for semilinear parabolic problems. SIAM J. Numer. Anal. 44, 1681–1702 (2006)
Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229, 7361–7372 (2010)
Zhou, J., Chen, L., Huang, Y.Q., Wang, W.S.: An efficient two-grid scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 17(1), 127–145 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
W. S. Wang was supported by Ky and Yu-Fen Fan Fund Travel Grant from the AMS, the National Natural Science Foundation of China Grants 11001033 and 11371074, the Natural Science Foundation for Distinguished Young scholars of Hunan Province in China Grant 13JJ1020, and the Research Foundation of Education Bureau of Hunan Province in China Grant 13A108.
L. Chen was supported by NSF Grant DMS-1418934, and in part by U.S. Department of Energy (DOE) prime award # DE-SC0006903 and NIH Grant P50GM76516.
J. Zhou was supported by NSFC Project (91430213) and 2012–2013 China Scholarship Council, and partially by NSF Grant DMS-1115961.
Rights and permissions
About this article
Cite this article
Wang, W., Chen, L. & Zhou, J. Postprocessing Mixed Finite Element Methods For Solving Cahn–Hilliard Equation: Methods and Error Analysis. J Sci Comput 67, 724–746 (2016). https://doi.org/10.1007/s10915-015-0101-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0101-9