Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The numerical approximation of boundary value problems by means of a probabilistic representations often has the drawback that the Monte Carlo estimate of the solution is substantially biased due to the presence of the domain boundary. We introduce a scheme, which we have called the leading-term Monte Carlo regression, which seeks to remove that bias by replacing a ’cloud’ of Monte Carlo estimates—carried out at different discretization levels—for the usual single Monte Carlo estimate. The practical result of our scheme is an acceleration of the Monte Carlo method. Theoretical analysis of the proposed scheme, confirmed by numerical experiments, shows that the achieved speedup can be well over 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Acebrón, J.A., Busico, M.P., Lanucara, P., Spigler, R.: Domain decomposition solution of elliptic problems via probabilistic methods. SIAM J. Sci. Comput. 27, 440–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernal, F., Acebrón, J.A.: A comparison of higher-order weak numerical schemes for stopped stochastic differential equations in bounded domains. Submitted (2015)

  3. Buchmann, F.M.: Simulation of stopped diffusions. J. Comput. Phys. 202(2), 446–462 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chatterjee, S., Hadi, A.S.: Regression Analysis by Example. Wiley, London (2012)

    MATH  Google Scholar 

  5. Freidlin, M.: Functional Integration and Partial Differential Equations. Princeton University Press, Princeton (1985)

  6. Giles, M.B.: Multi-level Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gobet, E., Menozzi, S.: Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme. Stoch. Proc. Appl. 112(2), 201–223 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gobet, E., Menozzi, S.: Stopped diffusion processes: overshoots and boundary correction. Stoch. Proc. Appl. 120, 130–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Higham, D.J., Mao, X., Roj, M., Song, Q., Yin, G.: Mean exit times and the multilevel Monte Carlo method. SIAM/ASA J. Uncertain. Quantif. 1(1), 2–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jansons, K.M., Lythe, G.D.: Exponential timestepping with boundary test for stochastic differential equations. SIAM J. Sci. Comput. 24, 1809–1822 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kloeden, P.E., Platten, E.: Numerical Solution of Stochastic Differential Equations. Springer, Applications of Mathematics, vol. 23 (1999)

  12. Mancini, S. : Monte Carlo approximations of boundary value problems: an efficient algorithm. Master thesis, Università degli Studi di Milano (2013)

  13. Mannella, R.: Absorbing boundaries and optimal stopping in a stochastic differential equation. Phys. Lett. A 254, 257–62 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  15. Neter, J., Kutner, M., Wasserman, W., Nachtsheim, C.: Applied Linear Statistical Models, 4th edn. Irwin (1996)

  16. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (2000)

    Google Scholar 

  17. Sabelfeld, K.K.: Monte Carlo Methods in Boundary Value Problems. Series in Computational Physics. Springer, Berlin (1991)

  18. Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8(4), 94–120 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by national funds through Fundação para a Ciência e a Tecnologia (FCT) under grants UID/CEC/50021/2013, and PTDC/EIA-CCO/098910/2008. FB also acknowledges FCT funding under grant SFRH/BPD/79986/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Acebrón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancini, S., Bernal, F. & Acebrón, J.A. An Efficient Algorithm for Accelerating Monte Carlo Approximations of the Solution to Boundary Value Problems. J Sci Comput 66, 577–597 (2016). https://doi.org/10.1007/s10915-015-0033-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0033-4

Keywords

Navigation