Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://graphics.stanford.edu/data/3Dscanrep/.

  2. http://www.cc.gatech.edu/projects/large_models/ply.html.

References

  1. Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation by basis functions of different scales and shapes. Calcolo 41(2), 77–87 (2004). doi:10.1007/s10092-004-0085-6

    Article  MATH  MathSciNet  Google Scholar 

  2. Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 1–21 (2014). doi:10.1093/imanum/drt071

  3. Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16(4), 375–387 (2002). doi:10.1023/A:1014584220418

    Article  MATH  MathSciNet  Google Scholar 

  4. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76. ACM (2001)

  5. Castrillón-Candás, J.E., Li, J., Eijkhout, V.: A discrete adapted hierarchical basis solver for radial basis function interpolation. BIT 53(1), 57–86 (2013). doi:10.1007/s10543-012-0397-x

    Article  MATH  MathSciNet  Google Scholar 

  6. Deng, Q., Driscoll, T.A.: A fast treecode for multiquadric interpolation with varying shape parameters. SIAM J. Sci. Comput. 34(2), A1126–A1140 (2012). doi:10.1137/110836225

    Article  MATH  MathSciNet  Google Scholar 

  7. Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36(9), 1344–1352 (2012). doi:10.1016/j.enganabound.2012.03.003

    Article  MathSciNet  Google Scholar 

  8. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ (2007). With 1 CD-ROM. Windows, Macintosh and UNIX

  9. Flyer, N., Lehto, E.: Rotational transport on a sphere: local node refinement with radial basis functions. J. Comput. Phys. 229(6), 1954–1969 (2010). doi:10.1016/j.jcp.2009.11.016

    Article  MATH  MathSciNet  Google Scholar 

  10. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007). doi:10.1016/j.camwa.2007.01.028

    Article  MATH  MathSciNet  Google Scholar 

  11. Fowkes, J.M., Gould, N.I.M., Farmer, C.L.: A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions. J. Global Optim. 56(4), 1791–1815 (2013). doi:10.1007/s10898-012-9937-9

    Article  MATH  MathSciNet  Google Scholar 

  12. Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56(3), 535–565 (2013). doi:10.1007/s10915-013-9688-x

    Article  MATH  MathSciNet  Google Scholar 

  13. Holdahl, S.R., Hardy, R.L.: Solvability and multiquadric analysis as applied to investigations of vertical crustal movements. Tectonophysics 52(1–4), 139–155 (1979). doi:10.1016/0040-1951(79)90217-8. URL http://www.sciencedirect.com/science/article/pii/0040195179902178. Recent Crustal Movements

  14. Hon, Y.C., Wu, Z.: A quasi-interpolation method for solving stiff ordinary differential equations. Int. J. Numer. Methods Eng. 48(8), 1187–1197 (2000). doi:10.1002/(SICI)1097-0207(20000720)48:8<1187:AID-NME942>3.0.CO;2-K

  15. Jamshidi, A.A., Kirby, M.J.: Skew-radial basis function expansions for empirical modeling. SIAM J. Sci. Comput. 31(6), 4715–4743 (2009/10). doi:10.1137/08072293X

  16. Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990). doi:10.1016/0898-1221(90)90271-K

    Article  MATH  MathSciNet  Google Scholar 

  17. Kansa, E.J., Carlson, R.E.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24(12), 99–120 (1992). doi:10.1016/0898-1221(92)90174-G. Advances in the theory and applications of radial basis functions

  18. Li, J.: Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Adv. Comput. Math. 23(1–2), 21–30 (2005). doi:10.1007/s10444-004-1807-7

    Article  MATH  MathSciNet  Google Scholar 

  19. Li, M., Wang, Y., Ling, L.: Numerical caputo differentiation by radial basis functions. J. Sci. Comput. 1–16 (2014). doi:10.1007/s10915-014-9857-6

  20. Marchandise, E., Piret, C., Remacle, J.F.: CAD and mesh repair with radial basis functions. J. Comput. Phys. 231(5), 2376–2387 (2012). doi:10.1016/j.jcp.2011.11.033

    Article  MATH  MathSciNet  Google Scholar 

  21. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2(1), 11–22 (1986). doi:10.1007/BF01893414

    Article  MATH  MathSciNet  Google Scholar 

  22. Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Bound. Elem. 33(11), 1239–1245 (2009). doi:10.1016/j.enganabound.2009.07.003

    Article  MATH  MathSciNet  Google Scholar 

  23. Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function finite difference method for the simulation of reaction-diffusion equations on stationary platelets within the augmented forcing method. Int. J. Numer. Meth. Fl. 75(1), 1–22 (2014). doi:10.1002/fld.3880

  24. Strang, G., Fix, G.: A fourier analysis of the finite element variational method. In: Constructive Aspects of Functional Analysis. Springer, New York, pp. 793–840 (1971)

  25. Varga, R.S.: Matrix Iterative Analysis, Springer Series in Computational Mathematics, vol. 27, expanded edn. Springer, Berlin (2000). doi:10.1007/978-3-642-05156-2

  26. Varga, R.S., Saff, E.B., Mehrmann, V.: Incomplete factorizations of matrices and connections with\(H\)-matrices. SIAM J. Numer. Anal. 17(6), 787–793 (1980). doi: 10.1137/0717066

    Article  MATH  MathSciNet  Google Scholar 

  27. Wei, T., Hon, Y.C., Wang, Y.B.: Reconstruction of numerical derivatives from scattered noisy data. Inverse Probl. 21(2), 657–672 (2005). doi:10.1088/0266-5611/21/2/013

    Article  MATH  MathSciNet  Google Scholar 

  28. Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  29. Wu, Z.: Compactly supported radial functions and the Strang-Fix condition. Appl. Math. Comput. 84(2–3), 115–124 (1997). doi:10.1016/S0096-3003(96)00110-5

    Article  MATH  MathSciNet  Google Scholar 

  30. Wu, Z.M.: Compactly supported positive definite radial functions. Adv. Comput. Math. 4(3), 283–292 (1995). doi:10.1007/BF03177517

    Article  MATH  MathSciNet  Google Scholar 

  31. Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23(1–2), 201–214 (2005). doi:10.1007/s10444-004-1832-6

    Article  MATH  MathSciNet  Google Scholar 

  32. Zhou, F., Zhang, J., Sheng, X., Li, G.: Shape variable radial basis function and its application in dual reciprocity boundary face method. Eng. Anal. Bound. Elem. 35(2), 244–252 (2011). doi:10.1016/j.enganabound.2010.08.009

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhu, S., Wathen, A.J.: Fast Sparse Kernel Summation on Cartesian Grids. Tech. Rep. 1820, The University of Oxford, Oxford (2014). URL http://eprints.maths.ox.ac.uk/1820/

Download references

Acknowledgments

We thank the referees for valuable advice and suggestion on presenting the results in a more illustrative way, in particular, for one referee who pointed out the fact in Lemma 3, which simplifies the proof in Theorem 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengxin Zhu.

Additional information

This research is supported by Award no KUK-C1-013-04, made by King Abdullah University of Science of Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Wathen, A.J. Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes. J Sci Comput 63, 862–884 (2015). https://doi.org/10.1007/s10915-014-9919-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9919-9

Keywords

Mathematics Subject Classification

Navigation