Abstract
It is known that interpolation with radial basis functions of the same shape can guarantee a nonsingular interpolation matrix, whereas little was known when one uses various shapes. In this paper, we prove that functions from a class of compactly supported radial basis functions are convex on a certain region; based on this local convexity and other local geometrical properties of the interpolation points, we construct a sufficient condition which guarantees diagonally dominant interpolation matrices for radial basis functions interpolation with different shapes. The proof is constructive and can be used to design algorithms directly. Numerical examples show that the scheme has a low accuracy but can be implemented efficiently. It can be used for inaccurate models where efficiency is more desirable. Large scale 3D implicit surface reconstruction problems are used to demonstrate the utility and reasonable results can be obtained efficiently.
Similar content being viewed by others
References
Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation by basis functions of different scales and shapes. Calcolo 41(2), 77–87 (2004). doi:10.1007/s10092-004-0085-6
Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 1–21 (2014). doi:10.1093/imanum/drt071
Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16(4), 375–387 (2002). doi:10.1023/A:1014584220418
Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial basis functions. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 67–76. ACM (2001)
Castrillón-Candás, J.E., Li, J., Eijkhout, V.: A discrete adapted hierarchical basis solver for radial basis function interpolation. BIT 53(1), 57–86 (2013). doi:10.1007/s10543-012-0397-x
Deng, Q., Driscoll, T.A.: A fast treecode for multiquadric interpolation with varying shape parameters. SIAM J. Sci. Comput. 34(2), A1126–A1140 (2012). doi:10.1137/110836225
Dou, F.F., Hon, Y.C.: Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation. Eng. Anal. Bound. Elem. 36(9), 1344–1352 (2012). doi:10.1016/j.enganabound.2012.03.003
Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ (2007). With 1 CD-ROM. Windows, Macintosh and UNIX
Flyer, N., Lehto, E.: Rotational transport on a sphere: local node refinement with radial basis functions. J. Comput. Phys. 229(6), 1954–1969 (2010). doi:10.1016/j.jcp.2009.11.016
Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007). doi:10.1016/j.camwa.2007.01.028
Fowkes, J.M., Gould, N.I.M., Farmer, C.L.: A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions. J. Global Optim. 56(4), 1791–1815 (2013). doi:10.1007/s10898-012-9937-9
Fuselier, E.J., Wright, G.B.: A high-order kernel method for diffusion and reaction-diffusion equations on surfaces. J. Sci. Comput. 56(3), 535–565 (2013). doi:10.1007/s10915-013-9688-x
Holdahl, S.R., Hardy, R.L.: Solvability and multiquadric analysis as applied to investigations of vertical crustal movements. Tectonophysics 52(1–4), 139–155 (1979). doi:10.1016/0040-1951(79)90217-8. URL http://www.sciencedirect.com/science/article/pii/0040195179902178. Recent Crustal Movements
Hon, Y.C., Wu, Z.: A quasi-interpolation method for solving stiff ordinary differential equations. Int. J. Numer. Methods Eng. 48(8), 1187–1197 (2000). doi:10.1002/(SICI)1097-0207(20000720)48:8<1187:AID-NME942>3.0.CO;2-K
Jamshidi, A.A., Kirby, M.J.: Skew-radial basis function expansions for empirical modeling. SIAM J. Sci. Comput. 31(6), 4715–4743 (2009/10). doi:10.1137/08072293X
Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990). doi:10.1016/0898-1221(90)90271-K
Kansa, E.J., Carlson, R.E.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24(12), 99–120 (1992). doi:10.1016/0898-1221(92)90174-G. Advances in the theory and applications of radial basis functions
Li, J.: Mixed methods for fourth-order elliptic and parabolic problems using radial basis functions. Adv. Comput. Math. 23(1–2), 21–30 (2005). doi:10.1007/s10444-004-1807-7
Li, M., Wang, Y., Ling, L.: Numerical caputo differentiation by radial basis functions. J. Sci. Comput. 1–16 (2014). doi:10.1007/s10915-014-9857-6
Marchandise, E., Piret, C., Remacle, J.F.: CAD and mesh repair with radial basis functions. J. Comput. Phys. 231(5), 2376–2387 (2012). doi:10.1016/j.jcp.2011.11.033
Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2(1), 11–22 (1986). doi:10.1007/BF01893414
Sarra, S.A., Sturgill, D.: A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Bound. Elem. 33(11), 1239–1245 (2009). doi:10.1016/j.enganabound.2009.07.003
Shankar, V., Wright, G.B., Fogelson, A.L., Kirby, R.M.: A radial basis function finite difference method for the simulation of reaction-diffusion equations on stationary platelets within the augmented forcing method. Int. J. Numer. Meth. Fl. 75(1), 1–22 (2014). doi:10.1002/fld.3880
Strang, G., Fix, G.: A fourier analysis of the finite element variational method. In: Constructive Aspects of Functional Analysis. Springer, New York, pp. 793–840 (1971)
Varga, R.S.: Matrix Iterative Analysis, Springer Series in Computational Mathematics, vol. 27, expanded edn. Springer, Berlin (2000). doi:10.1007/978-3-642-05156-2
Varga, R.S., Saff, E.B., Mehrmann, V.: Incomplete factorizations of matrices and connections with\(H\)-matrices. SIAM J. Numer. Anal. 17(6), 787–793 (1980). doi: 10.1137/0717066
Wei, T., Hon, Y.C., Wang, Y.B.: Reconstruction of numerical derivatives from scattered noisy data. Inverse Probl. 21(2), 657–672 (2005). doi:10.1088/0266-5611/21/2/013
Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)
Wu, Z.: Compactly supported radial functions and the Strang-Fix condition. Appl. Math. Comput. 84(2–3), 115–124 (1997). doi:10.1016/S0096-3003(96)00110-5
Wu, Z.M.: Compactly supported positive definite radial functions. Adv. Comput. Math. 4(3), 283–292 (1995). doi:10.1007/BF03177517
Wu, Z.M., Liu, J.P.: Generalized Strang-Fix condition for scattered data quasi-interpolation. Adv. Comput. Math. 23(1–2), 201–214 (2005). doi:10.1007/s10444-004-1832-6
Zhou, F., Zhang, J., Sheng, X., Li, G.: Shape variable radial basis function and its application in dual reciprocity boundary face method. Eng. Anal. Bound. Elem. 35(2), 244–252 (2011). doi:10.1016/j.enganabound.2010.08.009
Zhu, S., Wathen, A.J.: Fast Sparse Kernel Summation on Cartesian Grids. Tech. Rep. 1820, The University of Oxford, Oxford (2014). URL http://eprints.maths.ox.ac.uk/1820/
Acknowledgments
We thank the referees for valuable advice and suggestion on presenting the results in a more illustrative way, in particular, for one referee who pointed out the fact in Lemma 3, which simplifies the proof in Theorem 3.
Author information
Authors and Affiliations
Corresponding author
Additional information
This research is supported by Award no KUK-C1-013-04, made by King Abdullah University of Science of Technology.
Rights and permissions
About this article
Cite this article
Zhu, S., Wathen, A.J. Convexity and Solvability for Compactly Supported Radial Basis Functions with Different Shapes. J Sci Comput 63, 862–884 (2015). https://doi.org/10.1007/s10915-014-9919-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9919-9