Abstract
A continuously interpolated mortar condition is proposed for 2D and 3D \(P_k\) nonconforming finite elements on nonmatching grids. The resulting finite element method is an optimal order one in solving elliptic equations. Numerical tests on the 2D \(P_1\), 2D \(P_2\) and 3D \(P_1\) nonconforming finite elements are provided.
Similar content being viewed by others
References
Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods implementation, postprocessing and error estimates. RAIRO model. Math. Anal. Numer. 19, 7–32 (1985)
Babuška, I., Osborn, J.E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20(3), 510–536 (1983)
Babuška, I., Caloz, G., Osborn, J.E.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31(4), 945–981 (1994)
Bank, R.E., Xu, J.: An algorithm for coarsening unstructured meshes. Numer. Math. 73(1), 1–36 (1996)
Baran, A., Stoyan, G.: Gauss-Legendre elements: a stable, higher order non-conforming finite element family. Computing 79, 1–21 (2007)
Belgacem, F.B.: The Mortar Element Method with Lagrange Multipliers. Université Paul Sabatier, Toulouse, France (1994)
Braess, D., Dahmen, W.: Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6, 249–264 (1998)
Braess, D., Dahmen, W.: The mortar element method revisited—what are the right norms? In Debit, N., Garbey, M., Hoppe, R., Périaux, J., Keyes, D., Kuznetsov, Y. (eds.) Proceedings of the Thirteenth International Conference on Domain Decomposition, pp. 245–252. Springer, Berlin (2001)
Belgacem, F.B., Maday, Y.: The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Nal. Numér. 31, 289–302 (1997)
Bernardi, C., Maday, Y., Patera, A.T.: A new non conforming approach to domain decomposition: the mortar element method. In: Brezis, H., Lions, J.-L. (eds.) Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, pp. 13–51. Longman Scientific and Technical, Harlow, UK (1994)
Bertoluzza, S., Perrier, V.: The mortar method in the wavelet context. M2AN Math. Model Numer. Anal. 35, 647–674 (2001)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, 2nd edn. Springer, New York (2002)
Chan, T.F., Xu, J., Zikatanov, L.: An agglomeration multigrid method for unstructured grids, Domain decomposition methods, 10 (Boulder, CO, 1997), 67–81, Contemp. Math., 218, Amer. Math. Soc., Providence, RI (1998)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co, Amsterdam-New York-Oxford (1978)
Crouzeix, M., Raviart, P.-A.: Conforming and non-conforming finite elements for solving the stationary Stokes equations I. RAIRO Model Math. Anal. Numer. 7, 33–76 (1973). R-3
Fortin, M., Soulie, M.: A nonconforming piecewise quadratic finite element on triangles. Int. J. Numer. Methods Eng. 19, 505–520 (1983)
Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)
Lacour, C., Maday, Y.: Two different approaches for matching nonconforming grids: the mortar element method and the FETI method. BIT 37(3), 720–738 (1997)
Marcinkowski, L.: The mortar element method with locally nonconforming elements. BIT 39, 716–739 (1999)
Marcinkowski, L.: Domain decomposition methods for mortar finite element discretizations of plate problems. SIAM J. Numer. Anal. 39, 1097–1114 (2001)
Marcinkowski, L.: A mortar element method for some discretizations of a plate problem. Numer. Math. 93, 361–386 (2002)
Marcinkowski, L.: An Additive Schwarz Method for mortar Morley finite element discretizations of 4th order elliptic problem in 2d. Electron. Trans. Numer. Anal. 26, 34–54 (2007)
Marcinkowski, L.: A Neumann–Neumann algorithm for a mortar finite element discretization of fourth-order elliptic problems in 2D. Numer. Methods Partial Differ. Equ. 25, 1425–1442 (2009)
Marcinkowski, L.: A preconditioner for a FETI-DP method for mortar element discretization of a 4th order problem in 2D. Electron. Trans. Numer. Anal. 38, 1–16 (2011)
Marcinkowski, L., Rahman, T., Valdman, J.: A 3D Crouzeix-Raviart mortar finite element. Computing 86, 313–330 (2009)
Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^0\)-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput. (accepted)
Rahman, T., Bjørstad, P., Xu, X.: The Crouzeix-Raviart FE on nonmatching grids with an approximate method. SIAM J. Numer. Anal. 46, 496–516 (2008)
Rahman, T., Xu, X.: A multilevel preconditioner for the mortar method for nonconforming P1 finite element. ESAIM-M2AN 43, 429–444 (2009)
Rahman, T., Xu, X., Hoppe, R.: Additive Schwarz methods for the Crouzeix-Raviart mortar finite element for elliptic problems with discontinuous coefficients. Numer Math. 101, 551–572 (2003)
Sarkis, M.: Nonstandard coarse spaces and Schwarz methods for elliptic problems with discon-tinuous coefficients using non-conforming element. Numer. Math. 77, 383–406 (1997)
Seshaiyer, P., Suri, M.: Uniform hp convergence results for the mortar finite element method. Math. Comput. 69, 521–546 (1999)
Scott, L., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)
Wohlmuth, B.: A residual based error estimator for mortar finite element discretizations. Numer. Math. 84, 143–171 (1999)
Wohlmuth, B.I.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012 (2000)
Xu, X., Chen, J.: Multigrid for the mortar element method for P1 nonconforming element. Numer. Math. 88, 381–398 (2001)
Xu, X., Li, L., Chen, W.: A multigrid method for the mortar-type Morley element approximation of a plate bending problem. SIAM J. Numer. Anal. 39, 1721–1731 (2002)
Zhang, S.: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Math. 21, 541–556 (1995)
Acknowledgments
The first and the third authors are supported in part by NSFC under the Grant 11071124 and 11371199. The first author is also supported in part by the Project of Graduate Education Innovation of Jiangsu Province under the Grant CXZZ13-0387. The third author is also supported in part by the Jiangsu Provincial 2011 Program (Collaborative Innovation Center of Climate Change).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, C., Zhang, S. & Chen, J. A Unified Mortar Condition for Nonconforming Finite Elements. J Sci Comput 62, 179–197 (2015). https://doi.org/10.1007/s10915-014-9852-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9852-y
Keywords
- Mass-preserving interpolation
- Nonconforming element
- Continuously interpolated mortar condition
- Interface coupling
- Nonmatching grid