Abstract
We construct well-conditioned orthonormal hierarchical bases for simplicial \(\mathcal{L}_{2}\) finite elements. The construction is made possible via classical orthogonal polynomials of several variables. The basis functions are orthonormal over the reference simplicial elements in two and three dimensions. The mass matrices M are identity while the conditioning of the stiffness matrices S grows as \(\mathcal{O}(p^{3})\) with respect to the order p. The diagonally normalized stiffness matrices are well conditioned. The diagonally normalized composite matrices ζM+S are also well conditioned for a wide range of ζ. For the mass, stiffness and composite matrices, the bases in this study have much better conditioning than existing high-order hierarchical bases.
Similar content being viewed by others
References
Adjerid, S., Aiffa, M., Flaherty, J.E.: Hierarchical finite element bases for triangular and tetrahedral elements. Comput. Methods Appl. Mech. Eng. 190, 2925–2941 (2001)
Ainsworth, M., Coyle, J.: Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Eng. 190, 6709–6733 (2001)
Ainsworth, M., Coyle, J.: Conditioning of hierarchic p-version Nédélec elements on meshes of curvilinear quadrilaterals and hexahedra. SIAM J. Numer. Anal. 41, 731–750 (2003)
Ainsworth, M., Coyle, J.: Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58, 2103–2130 (2003)
Ayuso de Dios, B., Zikatanov, L.: Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40, 4–36 (2009)
Brenner, S.C., Gudi, T., Sung, L.-Y.: A posteriori error control for a weakly over-penalized symmetric interior penalty method. J. Sci. Comput. 40, 37–50 (2009)
Carnevali, P., Morris, R.B., Tsuji, Y., Taylor, G.: New basis functions and computational procedures for p-version finite element analysis. Int. J. Numer. Methods Eng. 36, 3759–3779 (1993)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland, New York (1978)
Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)
Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)
Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)
Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)
Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications, vol. 81. Cambridge University Press, Cambridge (2001)
Hu, N., Guo, X.-Z., Katz, I.N.: Bounds for eigenvalues and condition numbers in the p-version of the finite element method. Math. Comput. 67, 1423–1450 (1998)
Kellogg, O.D.: Foundations of Potential Theory. Die Grundlehren der Mathematischen Wissenschaften, vol. 31. Springer, New York (1967). Reprint from the first edition of 1929
Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R.A. (ed.) Theory and Application of Special Functions, Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975, pp. 435–495. Academic Press, New York (1975)
Lasaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974)
Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Die Grundlehren der mathematischen Wissenschaften, vol. 52. Springer, New York (1966). Third enlarged edition
Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
Remacle, J.-F., Flaherty, J.E., Shephard, M.S.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45, 53–72 (2003)
Schöberl, J., Zaglmayr, S.: High order Nédélec elements with local complete sequence properties. Compel 24, 374–384 (2005)
Webb, J.P.: Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. IEEE Trans. Antennas Propag. 47, 1244–1253 (1999)
Xin, J., Cai, W.: A well-conditioned hierarchical basis for triangular \(\mathcal{H}(\mathbf{curl})\)-conforming elements. Commun. Comput. Phys. 9, 780–806 (2011)
Xin, J., Pinchedez, K., Flaherty, J.E.: Implementation of hierarchical bases in FEMLAB for simplicial elements. ACM Trans. Math. Softw. 31, 187–200 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Xin, J., Cai, W. Well-conditioned Orthonormal Hierarchical \(\mathcal{L}_{2}\) Bases on ℝn Simplicial Elements. J Sci Comput 50, 446–461 (2012). https://doi.org/10.1007/s10915-011-9491-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-011-9491-5