Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A High Order Numerical Method for Computing Physical Observables in the Semiclassical Limit of the One-Dimensional Linear Schrödinger Equation with Discontinuous Potentials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a fourth order numerical method for the computation of multivalued physical observables (density, momentum, etc.) in the semiclassical limit of the one-dimensional linear Schrödinger equation in the case of discontinuous potentials. We adopt the level set framework developed in (Jin et al. in J. Comput. Phys. 210:497–518, 2005) which allows one to compute the multivalued physical observables via solving the classical Liouville equation with bounded initial data and approximating delta function integrals. We achieve high order accuracy for our method by studying two issues. The first is to highly accurately compute the solution and its derivatives of the Liouville equation with bounded initial data and discontinuous potentials. The second is to design high order numerical methods to evaluate one-dimensional delta function integrals with discontinuous kernel functions. Numerical examples are presented to verify that our method achieves the fourth order L 1-norm accuracy for computing multivalued physical observables of the one-dimensional linear Schrödinger equation with general discontinuous potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175(2), 487–524 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brenier, Y., Corrias, L.: A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré 15(2), 169–190 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Burchard, P., Cheng, L.-T., Merriman, B., Osher, S.: Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170(2), 720–741 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheng, L.T., Liu, H.L., Osher, S.: Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Commun. Math. Sci. 1(3), 593–621 (2003)

    MATH  MathSciNet  Google Scholar 

  6. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory, and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Engquist, B., Runborg, O.: Multi-phase computations in geometrical optics. J. Comput. Appl. Math. 74, 175–192 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Engquist, B., Runborg, O.: Computational high frequency wave propagation. Acta Numer. 12, 181–266 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Engquist, B., Tornberg, A.K., Tsai, R.: Discretization of Dirac delta functions in level set methods. J. Comput. Phys. 207(1), 28–51 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Falcone, M., Ferretti, R.: Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175, 559–575 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gasser, I., Markowich, P.A.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14(2), 97–116 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Gérard, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50, 321–377 (1997)

    Article  Google Scholar 

  13. Gosse, L.: Using K-branch entropy solutions for multivalued geometric optics computations. J. Comput. Phys. 180(1), 155–182 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gosse, L., Jin, S., Li, X.T.: On two moment systems for computing multiphase semiclassical limits of the Schrödinger equation. Math. Model. Methods Appl. Sci. 13, 1689–1723 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Heller, E.J.: Cellular dynamics: A new semiclassical approach to time-dependent quantum mechanics. J. Chem. Phys. 94, 2723–2729 (1991)

    Article  Google Scholar 

  16. Heller, E.J.: Guided Gaussian wave packets. Acc. Chem. Res. 39, 127–134 (2006)

    Article  MathSciNet  Google Scholar 

  17. Jin, S., Li, X.T.: Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner. Physica D 182, 46–85 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jin, S., Liao, X.: A Hamiltonian-preserving scheme for high frequency elastic waves in heterogeneous media. J. Hyperbolic Differ. Equ. 3(4), 741–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jin, S., Novak, K.: A semiclassical transport model for thin quantum barriers. Multiscale Model. Simul. 5(4), 1063–1086 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jin, S., Novak, K.: A semiclassical transport model for two-dimensional thin quantum barriers. J. Comput. Phys. 226, 1623–1644 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jin, S., Novak, K.: A coherent semiclassical transport model for pure-state quantum scattering, Commun. Math. Sci., to appear

  22. Jin, S., Osher, S.: A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE’s and Hamilton-Jacobi equations. Commun. Math. Sci. 1(6), 575–591 (2003)

    MATH  MathSciNet  Google Scholar 

  23. Jin, S., Qi, P.: l 1-error estimates on the immersed interface upwind scheme for linear convection equations with piecewise constant coefficients: a simple proof. Preprint

  24. Jin, S., Wen, X.: The Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials. Commun. Math. Sci. 3, 285–315 (2005)

    MATH  MathSciNet  Google Scholar 

  25. Jin, S., Wen, X.: Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds. J. Comput. Phys. 214, 672–697 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jin, S., Wen, X.: A Hamiltonian-preserving scheme for the Liouville equation of geometrical optics with partial transmissions and reflections. SIAM J. Numer. Anal. 44, 1801–1828 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jin, S., Wen, X.: Computation of transmissions and reflections in geometrical optics via the reduced Liouville equation. Wave Motion 43(8), 667–688 (2006)

    Article  MathSciNet  Google Scholar 

  28. Jin, S., Yang, X.: Computation of the semiclassical limit of the Schrödinger equation with phase shift by a level set method. J. Sci. Comput. 35(2), 144–169 (2008)

    Article  MathSciNet  Google Scholar 

  29. Jin, S., Yin, D.: Computational high frequency waves through curved interfaces via the Loiuville equation and geometric theory of diffraction. J. Comput. Phys. 227, 6106–6139 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jin, S., Yin, D.: Computation of high frequency wave diffraction by a half plane via the Loiuville equation and geometric theory of diffraction. Commun. Comput. Phys. 4(5), 1106–1128 (2008)

    Google Scholar 

  31. Jin, S., Liu, H.L., Osher, S., Tsai, R.: Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation. J. Comput. Phys. 205, 222–241 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jin, S., Liu, H.L., Osher, S., Tsai, R.: Computing multi-valued physical observables for high frequency limit of symmetric hyperbolic systems. J. Comput. Phys. 210, 497–518 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Jin, S., Liao, X., Yang, X.: The Vlasov-Poisson equations as the semiclassical limit of the Schrodinger-Poisson equations: a numerical study. J. Hyperbolic Differ. Equ. 5(3), 569–587 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Jin, S., Liao, X., Yang, X.: Computation of interface reflection and regular or diffuse transmission of the planar symmetric radiative transfer equation with isotropic scattering and its diffusion limit. SIAM J. Sci. Comput. 30, 1992–2017 (2008)

    Article  MathSciNet  Google Scholar 

  35. Jin, S., Wu, H., Huang, Z.: A hybrid phase-flow method for Hamiltonian systems with discontinuous Hamiltonians. SIAM J. Sci. Comput. 31, 1303–1321 (2008)

    Article  MathSciNet  Google Scholar 

  36. Jin, S., Wu, H., Yang, X.: Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci. 6, 995–1020 (2008)

    MATH  MathSciNet  Google Scholar 

  37. Jin, S., Wu, H., Yang, X.: A numerical study of the Gaussian beam methods for one-dimensional Schrödinger-Poisson equations, J. Comput. Math., to appear

  38. Jin, S., Wu, H., Yang, X., Huang, Z.: Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials. Preprint

  39. Kluk, E., Herman, M.F., Davis, H.L.: Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator. J. Chem. Phys. 84, 326–334 (1986)

    Article  Google Scholar 

  40. Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J. Comput. Phys. 228(8), 2951–2977 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Leung, S., Qian, J., Osher, S.: A level set method for three dimensional paraxial geometrical optics with multiple sources. Commun. Math. Sci. 2(4), 643–672 (2004)

    MATH  MathSciNet  Google Scholar 

  42. Lions, P.L., Paul, T.: Sur les measures de Wigner. Revista. Mat. Iberoamericana 9, 553–618 (1993)

    MATH  MathSciNet  Google Scholar 

  43. Liu, H.L., Cheng, L.T., Osher, S.: A level set framework for capturing multi-valued solutions of nonlinear first-order equations. J. Sci. Comput. 29(3), 353–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Markowich, P.A., Pietra, P., Pohl, C.: Numerical approximation of quadratic observables of Schrödinger-type equations in the semiclassical limit. Numer. Math. 81, 595–630 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Markowich, P.A., Pietra, P., Pohl, C., Stimming, H.P.: A Wigner-measure analysis of the Dufort-Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40, 1281–1310 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  46. Miller, L.: Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary. J. Math. Pures Appl. 79(3), 227–269 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Min, C.: Local level set method in high dimension and codimension. J. Comput. Phys. 200, 368–382 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Min, C., Gibou, F.: Geometric integration over irregular domains with application to level-set methods. J. Comput. Phys. 226, 1432–1443 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Osher, S., Cheng, L.T., Kang, M., Shim, H., Tsai, Y.H.: Geometric optics in a phase space based level set and Eulerian framework. J. Comput. Phys. 179, 622–648 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Peng, D., Merriman, B., Osher, S., Zhao, H.K., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  51. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  52. Runborg, O.: Some new results in multi-phase geometrical optics. Math. Model Numer. Anal. 34, 1203–1231 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  53. Smereka, P.: The numerical approximation of a delta function with application to level set methods. J. Comput. Phys. 211, 77–90 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sparber, C., Markowich, P., Mauser, N.: Multivalued geometrical optics: Wigner vs. WKB. Asymptot. Anal. 33, 153–187 (2003)

    MATH  MathSciNet  Google Scholar 

  55. Strain, J.: Semi-Lagrangian methods for level set equations. J. Comput. Phys. 151, 498–533 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. Tang, T., Teng, Z.H.: The sharpness of Kuznetsov’s O( \(\sqrt{\Delta x}\) ) L 1-error estimate for monotone difference schemes. Math. Comput. 64, 581–589 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462–488 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  58. Towers, J.D.: Two methods for discretizing a delta function supported on a level set. J. Comput. Phys. 220(2), 915–931 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  59. Wen, X.: High order numerical methods to a type of delta function integrals. J. Comput. Phys. 226, 1952–1967 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  60. Wen, X.: High order numerical quadratures to one dimensional delta function integrals. SIAM J. Sci. Comput. 30(4), 1825–1846 (2008)

    Article  MathSciNet  Google Scholar 

  61. Wen, X.: High order numerical methods to two dimensional delta function integrals in level set methods. J. Comput. Phys. 228(11), 4273–4290 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  62. Wen, X.: Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients II: Some related binomial coefficient inequalities. J. Comput. Math. 27(4), 474–483 (2009)

    Article  MathSciNet  Google Scholar 

  63. Wen, X.: High order numerical methods to three dimensional delta function integrals in level set methods. Preprint

  64. Wen, X.: The l 1-error estimates for a Hamiltonian-preserving scheme for the Liouville equation with piecewise constant potentials and perturbed initial data. Preprint

  65. Wen, X., Jin, S.: Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients I: L 1-error estimates. J. Comput. Math. 26(1), 1–22 (2008)

    MATH  MathSciNet  Google Scholar 

  66. Wen, X., Jin, S.: The l 1-error estimates for a Hamiltonian-preserving scheme for the Liouville equation with piecewise constant potentials. SIAM J. Numer. Anal. 46(5), 2688–2714 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  67. Wen, X., Jin, S.: The l 1-stability of a Hamiltonian-preserving scheme for the Liouville equation with discontinuous potentials. J. Comput. Math. 27, 45–67 (2009)

    MathSciNet  Google Scholar 

  68. Ying, L.X., Candès, E.J.: The phase flow method. J. Comput. Phys. 220, 184–215 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wen.

Additional information

Research supported in part by the Knowledge Innovation Project of the Chinese Academy of Sciences grant K3502012S8 and NSFC grant 10601062.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, X. A High Order Numerical Method for Computing Physical Observables in the Semiclassical Limit of the One-Dimensional Linear Schrödinger Equation with Discontinuous Potentials. J Sci Comput 42, 318–344 (2010). https://doi.org/10.1007/s10915-009-9326-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-009-9326-9

Keywords

Navigation