Abstract
We develop a fourth order numerical method for the computation of multivalued physical observables (density, momentum, etc.) in the semiclassical limit of the one-dimensional linear Schrödinger equation in the case of discontinuous potentials. We adopt the level set framework developed in (Jin et al. in J. Comput. Phys. 210:497–518, 2005) which allows one to compute the multivalued physical observables via solving the classical Liouville equation with bounded initial data and approximating delta function integrals. We achieve high order accuracy for our method by studying two issues. The first is to highly accurately compute the solution and its derivatives of the Liouville equation with bounded initial data and discontinuous potentials. The second is to design high order numerical methods to evaluate one-dimensional delta function integrals with discontinuous kernel functions. Numerical examples are presented to verify that our method achieves the fourth order L 1-norm accuracy for computing multivalued physical observables of the one-dimensional linear Schrödinger equation with general discontinuous potentials.
Similar content being viewed by others
References
Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)
Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175(2), 487–524 (2002)
Brenier, Y., Corrias, L.: A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré 15(2), 169–190 (1998)
Burchard, P., Cheng, L.-T., Merriman, B., Osher, S.: Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170(2), 720–741 (2001)
Cheng, L.T., Liu, H.L., Osher, S.: Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Commun. Math. Sci. 1(3), 593–621 (2003)
DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory, and Sobolev spaces. Invent. Math. 98, 511–547 (1989)
Engquist, B., Runborg, O.: Multi-phase computations in geometrical optics. J. Comput. Appl. Math. 74, 175–192 (1996)
Engquist, B., Runborg, O.: Computational high frequency wave propagation. Acta Numer. 12, 181–266 (2003)
Engquist, B., Tornberg, A.K., Tsai, R.: Discretization of Dirac delta functions in level set methods. J. Comput. Phys. 207(1), 28–51 (2005)
Falcone, M., Ferretti, R.: Semi-Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods. J. Comput. Phys. 175, 559–575 (2002)
Gasser, I., Markowich, P.A.: Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptot. Anal. 14(2), 97–116 (1997)
Gérard, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50, 321–377 (1997)
Gosse, L.: Using K-branch entropy solutions for multivalued geometric optics computations. J. Comput. Phys. 180(1), 155–182 (2002)
Gosse, L., Jin, S., Li, X.T.: On two moment systems for computing multiphase semiclassical limits of the Schrödinger equation. Math. Model. Methods Appl. Sci. 13, 1689–1723 (2003)
Heller, E.J.: Cellular dynamics: A new semiclassical approach to time-dependent quantum mechanics. J. Chem. Phys. 94, 2723–2729 (1991)
Heller, E.J.: Guided Gaussian wave packets. Acc. Chem. Res. 39, 127–134 (2006)
Jin, S., Li, X.T.: Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs. Wigner. Physica D 182, 46–85 (2003)
Jin, S., Liao, X.: A Hamiltonian-preserving scheme for high frequency elastic waves in heterogeneous media. J. Hyperbolic Differ. Equ. 3(4), 741–777 (2006)
Jin, S., Novak, K.: A semiclassical transport model for thin quantum barriers. Multiscale Model. Simul. 5(4), 1063–1086 (2006)
Jin, S., Novak, K.: A semiclassical transport model for two-dimensional thin quantum barriers. J. Comput. Phys. 226, 1623–1644 (2007)
Jin, S., Novak, K.: A coherent semiclassical transport model for pure-state quantum scattering, Commun. Math. Sci., to appear
Jin, S., Osher, S.: A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE’s and Hamilton-Jacobi equations. Commun. Math. Sci. 1(6), 575–591 (2003)
Jin, S., Qi, P.: l 1-error estimates on the immersed interface upwind scheme for linear convection equations with piecewise constant coefficients: a simple proof. Preprint
Jin, S., Wen, X.: The Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials. Commun. Math. Sci. 3, 285–315 (2005)
Jin, S., Wen, X.: Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with discontinuous local wave speeds. J. Comput. Phys. 214, 672–697 (2006)
Jin, S., Wen, X.: A Hamiltonian-preserving scheme for the Liouville equation of geometrical optics with partial transmissions and reflections. SIAM J. Numer. Anal. 44, 1801–1828 (2006)
Jin, S., Wen, X.: Computation of transmissions and reflections in geometrical optics via the reduced Liouville equation. Wave Motion 43(8), 667–688 (2006)
Jin, S., Yang, X.: Computation of the semiclassical limit of the Schrödinger equation with phase shift by a level set method. J. Sci. Comput. 35(2), 144–169 (2008)
Jin, S., Yin, D.: Computational high frequency waves through curved interfaces via the Loiuville equation and geometric theory of diffraction. J. Comput. Phys. 227, 6106–6139 (2008)
Jin, S., Yin, D.: Computation of high frequency wave diffraction by a half plane via the Loiuville equation and geometric theory of diffraction. Commun. Comput. Phys. 4(5), 1106–1128 (2008)
Jin, S., Liu, H.L., Osher, S., Tsai, R.: Computing multivalued physical observables for the semiclassical limit of the Schrödinger equation. J. Comput. Phys. 205, 222–241 (2005)
Jin, S., Liu, H.L., Osher, S., Tsai, R.: Computing multi-valued physical observables for high frequency limit of symmetric hyperbolic systems. J. Comput. Phys. 210, 497–518 (2005)
Jin, S., Liao, X., Yang, X.: The Vlasov-Poisson equations as the semiclassical limit of the Schrodinger-Poisson equations: a numerical study. J. Hyperbolic Differ. Equ. 5(3), 569–587 (2008)
Jin, S., Liao, X., Yang, X.: Computation of interface reflection and regular or diffuse transmission of the planar symmetric radiative transfer equation with isotropic scattering and its diffusion limit. SIAM J. Sci. Comput. 30, 1992–2017 (2008)
Jin, S., Wu, H., Huang, Z.: A hybrid phase-flow method for Hamiltonian systems with discontinuous Hamiltonians. SIAM J. Sci. Comput. 31, 1303–1321 (2008)
Jin, S., Wu, H., Yang, X.: Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations. Commun. Math. Sci. 6, 995–1020 (2008)
Jin, S., Wu, H., Yang, X.: A numerical study of the Gaussian beam methods for one-dimensional Schrödinger-Poisson equations, J. Comput. Math., to appear
Jin, S., Wu, H., Yang, X., Huang, Z.: Bloch decomposition-based Gaussian beam method for the Schrödinger equation with periodic potentials. Preprint
Kluk, E., Herman, M.F., Davis, H.L.: Comparison of the propagation of semiclassical frozen Gaussian wave functions with quantum propagation for a highly excited anharmonic oscillator. J. Chem. Phys. 84, 326–334 (1986)
Leung, S., Qian, J.: Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime. J. Comput. Phys. 228(8), 2951–2977 (2009)
Leung, S., Qian, J., Osher, S.: A level set method for three dimensional paraxial geometrical optics with multiple sources. Commun. Math. Sci. 2(4), 643–672 (2004)
Lions, P.L., Paul, T.: Sur les measures de Wigner. Revista. Mat. Iberoamericana 9, 553–618 (1993)
Liu, H.L., Cheng, L.T., Osher, S.: A level set framework for capturing multi-valued solutions of nonlinear first-order equations. J. Sci. Comput. 29(3), 353–373 (2006)
Markowich, P.A., Pietra, P., Pohl, C.: Numerical approximation of quadratic observables of Schrödinger-type equations in the semiclassical limit. Numer. Math. 81, 595–630 (1999)
Markowich, P.A., Pietra, P., Pohl, C., Stimming, H.P.: A Wigner-measure analysis of the Dufort-Frankel scheme for the Schrödinger equation. SIAM J. Numer. Anal. 40, 1281–1310 (2002)
Miller, L.: Refraction of high-frequency waves density by sharp interfaces and semiclassical measures at the boundary. J. Math. Pures Appl. 79(3), 227–269 (2000)
Min, C.: Local level set method in high dimension and codimension. J. Comput. Phys. 200, 368–382 (2004)
Min, C., Gibou, F.: Geometric integration over irregular domains with application to level-set methods. J. Comput. Phys. 226, 1432–1443 (2007)
Osher, S., Cheng, L.T., Kang, M., Shim, H., Tsai, Y.H.: Geometric optics in a phase space based level set and Eulerian framework. J. Comput. Phys. 179, 622–648 (2002)
Peng, D., Merriman, B., Osher, S., Zhao, H.K., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)
Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001)
Runborg, O.: Some new results in multi-phase geometrical optics. Math. Model Numer. Anal. 34, 1203–1231 (2000)
Smereka, P.: The numerical approximation of a delta function with application to level set methods. J. Comput. Phys. 211, 77–90 (2006)
Sparber, C., Markowich, P., Mauser, N.: Multivalued geometrical optics: Wigner vs. WKB. Asymptot. Anal. 33, 153–187 (2003)
Strain, J.: Semi-Lagrangian methods for level set equations. J. Comput. Phys. 151, 498–533 (1999)
Tang, T., Teng, Z.H.: The sharpness of Kuznetsov’s O( \(\sqrt{\Delta x}\) ) L 1-error estimate for monotone difference schemes. Math. Comput. 64, 581–589 (1995)
Tornberg, A.K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200, 462–488 (2004)
Towers, J.D.: Two methods for discretizing a delta function supported on a level set. J. Comput. Phys. 220(2), 915–931 (2007)
Wen, X.: High order numerical methods to a type of delta function integrals. J. Comput. Phys. 226, 1952–1967 (2007)
Wen, X.: High order numerical quadratures to one dimensional delta function integrals. SIAM J. Sci. Comput. 30(4), 1825–1846 (2008)
Wen, X.: High order numerical methods to two dimensional delta function integrals in level set methods. J. Comput. Phys. 228(11), 4273–4290 (2009)
Wen, X.: Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients II: Some related binomial coefficient inequalities. J. Comput. Math. 27(4), 474–483 (2009)
Wen, X.: High order numerical methods to three dimensional delta function integrals in level set methods. Preprint
Wen, X.: The l 1-error estimates for a Hamiltonian-preserving scheme for the Liouville equation with piecewise constant potentials and perturbed initial data. Preprint
Wen, X., Jin, S.: Convergence of an immersed interface upwind scheme for linear advection equations with piecewise constant coefficients I: L 1-error estimates. J. Comput. Math. 26(1), 1–22 (2008)
Wen, X., Jin, S.: The l 1-error estimates for a Hamiltonian-preserving scheme for the Liouville equation with piecewise constant potentials. SIAM J. Numer. Anal. 46(5), 2688–2714 (2008)
Wen, X., Jin, S.: The l 1-stability of a Hamiltonian-preserving scheme for the Liouville equation with discontinuous potentials. J. Comput. Math. 27, 45–67 (2009)
Ying, L.X., Candès, E.J.: The phase flow method. J. Comput. Phys. 220, 184–215 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported in part by the Knowledge Innovation Project of the Chinese Academy of Sciences grant K3502012S8 and NSFC grant 10601062.
Rights and permissions
About this article
Cite this article
Wen, X. A High Order Numerical Method for Computing Physical Observables in the Semiclassical Limit of the One-Dimensional Linear Schrödinger Equation with Discontinuous Potentials. J Sci Comput 42, 318–344 (2010). https://doi.org/10.1007/s10915-009-9326-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-009-9326-9