Abstract
The long-term dynamic behavior of many dynamical systems evolves on a low-dimensional, attracting, invariant slow manifold, which can be parameterized by only a few variables (“observables”). The explicit derivation of such a slow manifold (and thus, the reduction of the long-term system dynamics) is often extremely difficult or practically impossible. For this class of problems, the equation-free framework has been developed to enable performing coarse-grained computations, based on short full model simulations. Each full model simulation should be initialized so that the full model state is consistent with the values of the observables and close to the slow manifold. To compute such an initial full model state, a class of constrained runs functional iterations was proposed (Gear and Kevrekidis, J. Sci. Comput. 25(1), 17–28, 2005; Gear et al., SIAM J. Appl. Dyn. Syst. 4(3), 711–732, 2005). The schemes in this class only use the full model simulator and converge, under certain conditions, to an approximation of the desired state on the slow manifold. In this article, we develop an implementation of the constrained runs scheme that is based on a (preconditioned) Newton-Krylov method rather than on a simple functional iteration. The functional iteration and the Newton-Krylov method are compared in detail using a lattice Boltzmann model for one-dimensional reaction-diffusion as the full model simulator. Depending on the parameters of the lattice Boltzmann model, the functional iteration may converge slowly or even diverge. We show that both issues are largely resolved by using the Newton-Krylov method, especially when a coarse grid correction preconditioner is incorporated.
Similar content being viewed by others
References
Bouras, A., Frayssé, V.: Inexact matrix-vector products in Krylov methods for solving linear systems: A relaxation strategy. SIAM J. Matrix Anal. Appl. 26(3), 660–678 (2005)
Browning, G., Kreiss, H.-O.: Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42(4), 704–718 (1982)
Caiazzo, A.: Analysis of lattice Boltzmann initialization routines. J. Stat. Phys. 121(1–2), 37–48 (2005). Special Issue on Mesoscopic Methods in Engineering and Science. Guest Editors: Manfred Krafczyk, Anthony J.C. Ladd, and Li-Shi Luo
Chopard, B., Dupuis, A., Masselot, A., Luthi, P.: Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems. Adv. Complex Syst. 5(2–3), 103–246 (2002)
Curry, J., Haupt, S.E., Limber, M.E.: Low-order models, initializations, and the slow manifold. Tellus A 47, 145–161 (1995)
Danilov, V.G., Maslov, V.P., Volosov, K.A.: Mathematical Modelling of Heat and Mass Transfer Processes. Kluwer Academic, Dordrecht (1995)
Dawson, S.P., Chen, S., Doolen, G.D.: Lattice Boltzmann computations for reaction-diffusion equations. J. Chem. Phys. 98(2), 1514–1523 (1993)
E, W.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1(3), 423–436 (2003)
Gear, C.W., Kevrekidis, I.G.: Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput. 24(4), 1091–1106 (2003)
Gear, C.W., Kevrekidis, I.G.: Telescopic projective methods for parabolic differential equations. J. Comput. Phys. 187(1), 95–109 (2003)
Gear, C.W., Kevrekidis, I.G.: Computing in the past with forward integration. Phys. Lett. A 321(5–6), 335–343 (2004)
Gear, C.W., Kevrekidis, I.G.: Constraint-defined manifolds: A legacy code approach to low-dimensional computation. J. Sci. Comput. 25(1), 17–28 (2005)
Gear, C.W., Kaper, T.J., Kevrekidis, I.G., Zagaris, A.: Projecting to a slow manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4(3), 711–732 (2005)
Girimaji, S.S.: Reduction of large dynamical systems by minimization of evolution rate. Phys. Rev. Lett. 82, 2282–2285 (1999)
Holmes, E.E., Lewis, M.A., Banks, J.E., Veit, R.R.: Partial differential equations in ecology: Spatial interactions and population dynamics. Ecology 75(1), 17–29 (1994)
Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics, vol. 16. Society for Industrial and Applied Mathematics, Philadelphia (1995)
Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1(4), 715–762 (2003)
Kreiss, H.-O.: Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16(6), 980–998 (1979)
Kreiss, H.-O.: Problems with different time scales. In: Brackbill, J.H., Cohen, B.I. (eds.) Multiple Time Scales, pp. 29–57. Academic, New York (1985)
Lee, S.L., Gear, C.W.: Second-order accurate projective integrators for multiscale problems. J. Comput. Appl. Math. 201(1), 258–274 (2007)
Lorenz, E.N.: Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37, 1685–1699 (1980)
Mei, R., Luo, L.-S., Lallemand, P., d’Humières, D.: Consistent initial conditions for lattice Boltzmann simulations. Comput. Fluids 35(8–9), 855–862 (2006)
Nicolaides, R.A.: Deflation of conjugate gradients with applications to boundary value problems. SIAM J. Numer. Anal. 24(2), 355–365 (1987)
Padiy, A., Axelsson, O., Polman, B.: Generalized augmented matrix preconditioning approach and its application to iterative solution of ill-conditioned algebraic systems. SIAM J. Matrix Anal. Appl. 22(3), 793–818 (2000)
Parks, M.L., de Sturler, E., Mackey, G., Johnson, D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28(5), 1651–1674 (2006)
Patil, D.J., Hunt, B.R., Kalnay, E., Yorke, J.A., Ott, E.: Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett. 86(26), 5878–5881 (2001)
Qian, Y.H., Orszag, S.A.: Scalings in diffusion-driven reaction A+B→C: Numerical simulations by lattice BGK models. J. Stat. Phys. 81(1–2), 237–253 (1995)
Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Comput. 14, 461–469 (1993)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)
Shroff, G.M., Keller, H.B.: Stabilization of unstable procedures: The recursive projection method. SIAM J. Numer. Anal. 30(4), 1099–1120 (1993)
Simoncini, V., Szyld, D.B.: Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Sci. Comput. 25(2), 454–477 (2003)
Simoncini, V., Szyld, D.B.: On the occurrence of superlinear convergence of exact and inexact Krylov subspace methods. SIAM Rev. 47, 247–272 (2005)
Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 1st edn. Numerical Mathematics and Scientific Computation. Springer Series in Computational Mathematics, vol. 252. Oxford University Press, Oxford (2001)
Trefethen, L.N., Bau, D.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)
Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic, London (2001)
Van Leemput, P., Lust, K., Kevrekidis, I.G.: Coarse-grained numerical bifurcation analysis of lattice Boltzmann models. Phys. D: Nonlinear Phenom. 210(1–2), 58–76 (2005)
Van Leemput, P., Rheinländer, M., Junk, M.: Smooth initialization of lattice Boltzmann schemes. Comput. Math. Appl. (2007, accepted)
Van Leemput, P., Vanroose, W., Roose, D.: Mesoscale analysis of the equation-free constrained runs initialization scheme. SIAM Multiscale Model. Simul. 6(4), 1234–1255 (2007)
Vandekerckhove, C., Roose, D.: Accuracy analysis of acceleration schemes for stiff multiscale problems. J. Comput. Appl. Math. 211(2), 181–200 (2008)
Vandekerckhove, C., Roose, D., Lust, K.: Numerical stability analysis of an acceleration scheme for step size constrained time integrators. J. Comput. Appl. Math. 200(2), 761–777 (2007)
Vandekerckhove, C., Van Leemput, P., Roose, D.: Accuracy and stability of the coarse time-stepper for a lattice Boltzmann model. J. Algorithms Comput. Technol. 2(2), 249–273 (2008)
vanden Eshof, J., Sleijpen, G.L.G.: Inexact Krylov subspace methods for linear systems. SIAM J. Matrix Anal. Appl. 26(1), 125–153 (2005)
Zagaris, A., Gear, C.W., Kaper, T.J., Kevrekidis, I.G.: Analysis of the accuracy and convergence of equation-free projection to a slow manifold (2007, submitted)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vandekerckhove, C., Kevrekidis, I. & Roose, D. An Efficient Newton-Krylov Implementation of the Constrained Runs Scheme for Initializing on a Slow Manifold. J Sci Comput 39, 167–188 (2009). https://doi.org/10.1007/s10915-008-9256-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-008-9256-y