Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Staggered Finite Difference Schemes for Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

In this work, we introduce new finite-difference shock-capturing central schemes on staggered grids. Staggered schemes may have better resolution of the corresponding unstaggered schemes of the same order. They are based on high-order nonoscillatory reconstruction (ENO or WENO), and a suitable ODE solver for the computation of the integral of the flux. Although they suffer from a more severe stability restriction, they do not require a numerical flux function. A comparison of the new schemes with high-order finite volume (on staggered and unstaggered grids) and high order unstaggered finite difference methods is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asher U., Ruuth S., Spiteri R.J. (1997). Implicit-explicit Runge–Kutta methods for time dependent partial differential equations. Appl. Numer. Math. 25, 151–167

    Article  MathSciNet  Google Scholar 

  2. Bianco F., Puppo G., Russo G., (1999). High order central schemes for hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 21(1): 294–322

    Article  MathSciNet  Google Scholar 

  3. Harten A., Lax P.D., van Leer B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25(1): 35–61

    Article  MathSciNet  Google Scholar 

  4. Jiang G.-S., Levy D., Lin C.-T., Osher S., Tadmor E. (1998). High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35(6): 2147–2168

    Article  MathSciNet  Google Scholar 

  5. Kennedy C.A., Carpenter M.H. (2003). Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1–2): 139–181

    Article  MathSciNet  Google Scholar 

  6. Kurganov A., Noelle S., Petrova G., (2001). Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton Jacobi equations. SIAM J. Sci. Comput. 23, 707–740

    Article  MathSciNet  Google Scholar 

  7. Kurganov A., Tadmor E. (2000). New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1): 241–282

    Article  CAS  ADS  MathSciNet  Google Scholar 

  8. Kurganov A., Levy D. (2000). A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22(4): 1461–1488

    Article  MathSciNet  Google Scholar 

  9. Lax P.D. (1954). Weak solutions of non-linear hyperbolic equations and their numerical computation. CPAM. 7, 159–193

    MATH  MathSciNet  Google Scholar 

  10. Levy D., Puppo G., Russo G. (1999). Central WENO schemes for hyperbolic systems of conservation laws. Math. Model Numer. Anal. 33(3): 547–571

    Article  MathSciNet  Google Scholar 

  11. Liu X.D., Tadmor E. (1998). Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79, 397–425

    Article  MathSciNet  Google Scholar 

  12. Nessyahu H., Tadmor E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2): 408–463

    Article  MathSciNet  Google Scholar 

  13. Pareschi L., Puppo G., Russo G. (2005). Central Runge–Kutta Schemes for Conservation Laws. SIAM J. Sci. Comput. 26, 979–999

    Article  MathSciNet  Google Scholar 

  14. Pareschi L., Russo G. (2005). Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1): 129–155

    Article  Google Scholar 

  15. Puppo, G., and Russo, G. (2004). Staggered finite difference schemes for balance laws (Proc. of HYP2004, Tenth International Conference on Hyperbolic Problems: Theory, Numerics, Applications, September 13–17), HOTEL HANKYU EXPO PARK, Osaka, Japan, to appear.

  16. Qiu J., Shu C.W. (2002). On the construction, comparison, and local characteristic decomposition for high order central WENO schemes. J. Comput. Phys. 183, 187–209

    Article  ADS  MathSciNet  Google Scholar 

  17. Shi J., Hu C., Shu C.W. (2002). A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127

    Article  CAS  ADS  Google Scholar 

  18. Shu C.-W. (1998). Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws. In: Quarteroni A. (eds). Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, Springer, Berlin

    Google Scholar 

  19. Shu C.-W., Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. JCP 77, 439–471

    MathSciNet  Google Scholar 

  20. Tadmor E. (1998). Approximate solutions of nonlinear conservation laws. In: Quarteroni A. (eds). Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Puppo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puppo, G., Russo, G. Staggered Finite Difference Schemes for Conservation Laws. J Sci Comput 27, 403–418 (2006). https://doi.org/10.1007/s10915-005-9036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9036-x

Keywords

Navigation