Abstract
The paper is concerned with non-conforming wavelet-type discretization of elliptic partial differential equations. In particular it analyzes some implementation issues related to the form of the constraint operator in the Mortar approach. Moreover it gives a preliminary example of the coupling of wavelets with finite elements in non-trivial geometries.
Similar content being viewed by others
References
Abdoulaev G., Achdou Y., Kutznetsov Y., Prud’homme C (1999). On the parallel inplementation of the mortar element method M2AN Math. Model. Numer. Anal. 33(2): 245–259
Achdou Y., Pironneau O. (1993). A fast solver for Navier–Stokes equations in the laminar regime using mortar finite element and boundary element method. SIAM J. Numer. Anal. 32(4): 985–1016
Anagnostou, G., Maday, Y., and Patera, A. T. (1991) A sliding mesh method for partial differential equations in nonstationary geometries: application to the incompressible Navier–Stokes equations Technical Report 91024, Laboratoire d’Analyse Numérique
Anderson L., Hall N., Jawerth B., Peters G. (1993) Wavelets on closed subsets on the real line. In: Schumaker L.L., Webb G. (ed). Topics in the Theory and Applications of Wavelets, 1993. Academic Press, Boston MA, pp. 1–61
Ben Belgacem F. (1999). The mortar element method with Lagrange multiplier. Numer. Math. 84(2): 173–197
Ben Belgacem F., Buffa A., Maday Y. (2001). The mortar element method for 3d Maxwell’s equations: First results. SIAM J. Numer. Anal. 39(3): 880–901
Belhachmi, Z., and Bernardi, C. (1994). The mortar spectral element method for fourth-order problems. Comp. Meth. Appl Mech. Eng., 116
Bertoluzza, S. (1997). An adaptive wavelet collocation method based on interpolating wavelets. In Multiscale Wavelet Methods for Partial Differential Equations, vol. 6 of Wavelets Analysis and its Applications, pages 109–135. Academic Press, pp. 109–133
Bertoluzza, S., Falletta, S., and Perrier, V. (2002). Wavelet/fem coupling by the mortar method. In Lecture Notes in Computational Science and Engineering, pp. 119–132
Bertoluzza S., Mazet S., Verani M. (2002). A nonlinear Richardson algorithm for the solution of elliptic PDE’s Math. Models Meth. Appl. Sci. 2, 143–158
Bertoluzza S., Perrier V. (2001). The mortar method in the wavelet context. ESAIM:M2AN. 4, 647–673
Bertoluzza S., Pietra P. (2000). Space frequency adaptive approximation for quantum hydrodynamic models. Transport Theory Stat. Phys. 28, 375–395
Canuto C., Tabacco A., Urban K. (2000). The wavelet element method. II. Realization and additional features in 2D and 3D. Appl. Comput. Harmon. Anal. 8(2): 123–165
Charton P., Perrier V. (1996). A pseudo-wavelet scheme for the two-dimensional Navier-Stokes equation. Comp. Appl Math. 15, 139–160
Cohen A. (2000). Numerical analysis of wavelet methods. In: Ciarlet P.G., Lions J.L. (ed). Handbook in Numerical Analysis, vol. VII. Elsevier Science Publishers, North Holland
Cohen A., Daubechies I., Vial P. (1993). Wavelets on the interval and fast wavelet transforms. ACHA, 1, 54–81
Cohen A., Masson R. (2000). Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition. Numer. Math. 86(2): 193–238
Dahlke S., Dahmen W., Hochmut R., Schneider R. (1997) Stable multiscale bases and local error estimation for elliptic problems. Appl. Numer. Math. 23, 21–48
Dahmen W., Kunoth A. (1992). Multilevel preconditioning Numer. Math. 63, 315–344
Dahmen W., Kunoth A., Urban K. (1999). Biorthogonal spline-wavelets on the interval – stability and moment condition. ACHA 6, 132–196
Dahmen W., Schneider R. (1998). Wavelets with complementary boundary conditions – Function spaces on the cube. Results Math. 34, 255–293
Dahmen W., Schneider R. (1999). Wavelets on manifolds. I Construction and domain decomposition. SIAM J. Math Anal. 31(1): 184–230
Daubechies, I. (1992). Ten lectures on wavelets In CBMS Lecture Notes, vol. 61. SIAM, Philadelphia
Jaffard S. (1992). Wavelet methods for fast resolution of elliptic problems. SIAM J. Numer. Anal 29, 965–986
Maday, Y., Perrier, V., and Ravel, J.C. (1991). Adaptivité dynamique sur bases d’ondelettes pour l’approximation d’équations aux derivées partielles. C. R. Acad. Sci Paris, 312(Série I), 405–410
Masson, R. (1996). Biorthogonal spline wavelets on the interval for the resolution of boundary problems. M 3 AS 6(6)
Meyer, Y. (1990). Ondelettes et Opérateurs. Hermann
Monasse P., Perrier V. (1998). Orthonormal wavelet bases adapted for partial differential equations with boundary conditions. SIAM J. Math. Anal. 29, 1040–1065
Prud’homme, C. (1998). A strategy for the resolution of the tridimensionnal incompressible Navier–Stokes equations. In Méthodes Itératives de Décomposition de Domaines et Communications en Calcul Parallèle, vol. 10 of Calculateurs Parallèles Réséaux et Systèmes Répartis, Hermes pp. 371–380
Wohlmuth B. (2000). A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38, 989–1012
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bertoluzza, S., Falletta, S. & Perrier, V. Implementation of the Mortar Method in the Wavelet Context. J Sci Comput 29, 219–255 (2006). https://doi.org/10.1007/s10915-005-9002-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-005-9002-7