Abstract
The generalized Zakharov system (ZS) couples a dispersive field E (scalar or vectorial) and \(\mathcal{J}\) nondispersive fields \(\{n_j\}_{j=1}^\mathcal{J}\) with a propagating speed of \(1/\in_j\). In this paper, we extend our one-dimensional time-splitting spectral method (TSSP) for the generalized ZS into higher dimension. A main new idea is to reformulate the multi-dimensional wave equations for the nondispersive fields into a first-order system using a change of variable defined in the Fourier space. The proposed scheme TSSP is unconditionally stable, second-order in time and spectrally accurate in space. Moreover, in the subsonic regime, it allows numerical capturing of the subsonic limit without resolving the small parameters \(\in_j\). Numerical examples confirm these properties of this method
Similar content being viewed by others
References
W. Bao S. Jin P.A. Markowich (2002) ArticleTitleOn time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime J. Comput. Phys. 175 487–524 Occurrence Handle1880116 Occurrence Handle10.1006/jcph.2001.6956
W. Bao S. Jin P.A. Markowich (2003) ArticleTitleNumerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes SIAM J. Sci. Comp. 25 27–64 Occurrence Handle2005b:65113
W. Bao F.F. Sun (2005) ArticleTitleEfficient and stable numerical methods for the generalized and vector Zakharov system SIAM J. Sci. Comput. 26 IssueID3 1057–1088 Occurrence Handle2005m:65192 Occurrence Handle10.1137/030600941
W. Bao F.F. Sun G.W. Wei (2003) ArticleTitleNumerical methods for the generalized Zakharov system J. Comp. Phys. 190 201–228 Occurrence Handle2004m:65160
R. Caflisch S. Jin G. Russo (1997) ArticleTitleUniformly accurate schemes for hyperbolic systems with relaxations SIAM J. Num. Anal. 34 246–281 Occurrence Handle98a:65112
C. Canuto M.Y. Hussaini A. Quarteroni T.A. Zang (1988) Spectral Methods in Fluid Dynamics Springer-Verlag New York
Q. Chang H. Jiang (1994) ArticleTitleA conservative difference scheme for the Zakharov equations J. Comput. Phys. 113 IssueID2 309–319 Occurrence Handle95c:76070 Occurrence Handle10.1006/jcph.1994.1138
Q. Chang B. Guo H. Jiang (1995) ArticleTitleFinite difference method for generalized Zakharov equations Math. Comp. 64 537–553 Occurrence Handle95f:65163
A.S. Davydov (1979) ArticleTitleSolitons in molecular systems Physica Scripta 20 387–394 Occurrence Handle1063.81686 Occurrence Handle80j:81090
L.M. Degtyarev V.G. Nakhan’kov L.I. Rudakov (1974) ArticleTitleDynamics of the formation and interaction of Langmuir solitons and strong turbulence Sov. Phys. JETP 40 264–268
C.W. Gear (1971) Numerical Initial value Problems in Ordinary Differential Equations Prentice-Hall Englewood Cliffs, NJ
R. Glassey (1992) ArticleTitleApproximate solutions to the Zakharov equations via finite differences J. Comput. Phys. 100 377–383 Occurrence Handle0775.78001 Occurrence Handle93a:76071 Occurrence Handle10.1016/0021-9991(92)90243-R
R. Glassey (1992) ArticleTitleConvergence of an energy-preserving scheme for the Zakharov equations in one space dimension Math. Comp. 58 83–102 Occurrence Handle0746.65066 Occurrence Handle92e:65123
H. Hadouaj B.A. Malomed G.A. Maugin (1991) ArticleTitleDynamics of a soliton in a generalized Zakharov system with dissipation Phys. Rev. A 44 IssueID6 3925–3931 Occurrence Handle92g:35190
H. Hadouaj B.A. Malomed G.A. Maugin (1991) ArticleTitleSoliton-soliton collisions in a generalized Zakharov system Phys. Rev. A 44 IssueID6 3932–3940 Occurrence Handle92f:58163
S. Jin (1995) ArticleTitleRunge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms J. Comp. Phys. 122 51–67 Occurrence Handle0840.65098
S. Jin P.A. Markowich C.X. Zheng (2004) ArticleTitleNumerical simulation of a generalized Zakharov system J. Comput. Phys. 201 IssueID1 376–395 Occurrence Handle2005e:65155 Occurrence Handle10.1016/j.jcp.2004.06.001
D. Pathria J.L. Morris (1980) ArticleTitlePseudo-spectral solution of nonlinear Schrödinger equation J. Comput. Phys. 87 108–125 Occurrence Handle91d:35204
T. Ozawa Y. Tsutsumi (1992) ArticleTitleThe nonlinear Schrödinger limit and the initial layer of the Zakharov equations Diff. Int. Eqn. 5 721–745 Occurrence Handle93d:76079
G.L. Payne D.R. Nicholson R.M. Downie (1983) ArticleTitleNumerical solution of the Zakharov system J. Comput. Phys. 50 482–498 Occurrence Handle84m:82079 Occurrence Handle10.1016/0021-9991(83)90107-9
S. Schochet M. Weinstein (1986) ArticleTitleThe nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence Comm. Math. Phys. 106 569–580 Occurrence Handle87j:35227 Occurrence Handle10.1007/BF01463396
G. Strang (1968) ArticleTitleOn the construction and comparison of difference schemes SIAM J. Numer. Anal. 5 IssueID3 506–517 Occurrence Handle0184.38503 Occurrence Handle38 #4057 Occurrence Handle10.1137/0705041
C. Sulem P.L. Sulem (1999) The nonlinear Schrödinger equation Springer-Verlag New York
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, S., Zheng, C. A Time-Splitting Spectral Method for the Generalized Zakharov System in Multi-Dimensions. J Sci Comput 26, 127–149 (2006). https://doi.org/10.1007/s10915-005-4929-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-005-4929-2