Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Time-Splitting Spectral Method for the Generalized Zakharov System in Multi-Dimensions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The generalized Zakharov system (ZS) couples a dispersive field E (scalar or vectorial) and \(\mathcal{J}\) nondispersive fields \(\{n_j\}_{j=1}^\mathcal{J}\) with a propagating speed of \(1/\in_j\). In this paper, we extend our one-dimensional time-splitting spectral method (TSSP) for the generalized ZS into higher dimension. A main new idea is to reformulate the multi-dimensional wave equations for the nondispersive fields into a first-order system using a change of variable defined in the Fourier space. The proposed scheme TSSP is unconditionally stable, second-order in time and spectrally accurate in space. Moreover, in the subsonic regime, it allows numerical capturing of the subsonic limit without resolving the small parameters \(\in_j\). Numerical examples confirm these properties of this method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bao S. Jin P.A. Markowich (2002) ArticleTitleOn time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime J. Comput. Phys. 175 487–524 Occurrence Handle1880116 Occurrence Handle10.1006/jcph.2001.6956

    Article  MathSciNet  Google Scholar 

  2. W. Bao S. Jin P.A. Markowich (2003) ArticleTitleNumerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes SIAM J. Sci. Comp. 25 27–64 Occurrence Handle2005b:65113

    MathSciNet  Google Scholar 

  3. W. Bao F.F. Sun (2005) ArticleTitleEfficient and stable numerical methods for the generalized and vector Zakharov system SIAM J. Sci. Comput. 26 IssueID3 1057–1088 Occurrence Handle2005m:65192 Occurrence Handle10.1137/030600941

    Article  MathSciNet  Google Scholar 

  4. W. Bao F.F. Sun G.W. Wei (2003) ArticleTitleNumerical methods for the generalized Zakharov system J. Comp. Phys. 190 201–228 Occurrence Handle2004m:65160

    MathSciNet  Google Scholar 

  5. R. Caflisch S. Jin G. Russo (1997) ArticleTitleUniformly accurate schemes for hyperbolic systems with relaxations SIAM J. Num. Anal. 34 246–281 Occurrence Handle98a:65112

    MathSciNet  Google Scholar 

  6. C. Canuto M.Y. Hussaini A. Quarteroni T.A. Zang (1988) Spectral Methods in Fluid Dynamics Springer-Verlag New York

    Google Scholar 

  7. Q. Chang H. Jiang (1994) ArticleTitleA conservative difference scheme for the Zakharov equations J. Comput. Phys. 113 IssueID2 309–319 Occurrence Handle95c:76070 Occurrence Handle10.1006/jcph.1994.1138

    Article  MathSciNet  Google Scholar 

  8. Q. Chang B. Guo H. Jiang (1995) ArticleTitleFinite difference method for generalized Zakharov equations Math. Comp. 64 537–553 Occurrence Handle95f:65163

    MathSciNet  Google Scholar 

  9. A.S. Davydov (1979) ArticleTitleSolitons in molecular systems Physica Scripta 20 387–394 Occurrence Handle1063.81686 Occurrence Handle80j:81090

    MATH  MathSciNet  Google Scholar 

  10. L.M. Degtyarev V.G. Nakhan’kov L.I. Rudakov (1974) ArticleTitleDynamics of the formation and interaction of Langmuir solitons and strong turbulence Sov. Phys. JETP 40 264–268

    Google Scholar 

  11. C.W. Gear (1971) Numerical Initial value Problems in Ordinary Differential Equations Prentice-Hall Englewood Cliffs, NJ

    Google Scholar 

  12. R. Glassey (1992) ArticleTitleApproximate solutions to the Zakharov equations via finite differences J. Comput. Phys. 100 377–383 Occurrence Handle0775.78001 Occurrence Handle93a:76071 Occurrence Handle10.1016/0021-9991(92)90243-R

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Glassey (1992) ArticleTitleConvergence of an energy-preserving scheme for the Zakharov equations in one space dimension Math. Comp. 58 83–102 Occurrence Handle0746.65066 Occurrence Handle92e:65123

    MATH  MathSciNet  Google Scholar 

  14. H. Hadouaj B.A. Malomed G.A. Maugin (1991) ArticleTitleDynamics of a soliton in a generalized Zakharov system with dissipation Phys. Rev. A 44 IssueID6 3925–3931 Occurrence Handle92g:35190

    MathSciNet  Google Scholar 

  15. H. Hadouaj B.A. Malomed G.A. Maugin (1991) ArticleTitleSoliton-soliton collisions in a generalized Zakharov system Phys. Rev. A 44 IssueID6 3932–3940 Occurrence Handle92f:58163

    MathSciNet  Google Scholar 

  16. S. Jin (1995) ArticleTitleRunge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms J. Comp. Phys. 122 51–67 Occurrence Handle0840.65098

    MATH  Google Scholar 

  17. S. Jin P.A. Markowich C.X. Zheng (2004) ArticleTitleNumerical simulation of a generalized Zakharov system J. Comput. Phys. 201 IssueID1 376–395 Occurrence Handle2005e:65155 Occurrence Handle10.1016/j.jcp.2004.06.001

    Article  MathSciNet  Google Scholar 

  18. D. Pathria J.L. Morris (1980) ArticleTitlePseudo-spectral solution of nonlinear Schrödinger equation J. Comput. Phys. 87 108–125 Occurrence Handle91d:35204

    MathSciNet  Google Scholar 

  19. T. Ozawa Y. Tsutsumi (1992) ArticleTitleThe nonlinear Schrödinger limit and the initial layer of the Zakharov equations Diff. Int. Eqn. 5 721–745 Occurrence Handle93d:76079

    MathSciNet  Google Scholar 

  20. G.L. Payne D.R. Nicholson R.M. Downie (1983) ArticleTitleNumerical solution of the Zakharov system J. Comput. Phys. 50 482–498 Occurrence Handle84m:82079 Occurrence Handle10.1016/0021-9991(83)90107-9

    Article  MathSciNet  Google Scholar 

  21. S. Schochet M. Weinstein (1986) ArticleTitleThe nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence Comm. Math. Phys. 106 569–580 Occurrence Handle87j:35227 Occurrence Handle10.1007/BF01463396

    Article  MathSciNet  Google Scholar 

  22. G. Strang (1968) ArticleTitleOn the construction and comparison of difference schemes SIAM J. Numer. Anal. 5 IssueID3 506–517 Occurrence Handle0184.38503 Occurrence Handle38 #4057 Occurrence Handle10.1137/0705041

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Sulem P.L. Sulem (1999) The nonlinear Schrödinger equation Springer-Verlag New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Zheng, C. A Time-Splitting Spectral Method for the Generalized Zakharov System in Multi-Dimensions. J Sci Comput 26, 127–149 (2006). https://doi.org/10.1007/s10915-005-4929-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-4929-2

Keywords

Navigation