Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Mixed Discontinuous Galerkin Methods for Darcy Flow

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements (both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods (see e.g. D.N. Arnold et al. SIAM J. Numer. Anal.39, 1749–1779 (2002) and B. Cockburn, G.E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, (Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T.J.R. Hughes, Meth. Appl. Mech. Eng.191, 4341–4370 (2002) and T.J.R. Hughes, A. Masud, and J. Wan, (in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree ≥ 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T.J.R. Hughes, Meth. Appl. Mech. Eng.191, 4341–4370 (2002) and T.J.R. Hughes, A. Masud, and J. Wan, (in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods (namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference ‘‘Numerical methods for fluid dynamics V’‘, Clarendon Press, Oxford (1995) and Baumann–Oden Comput. Meth. Appl. Mech. Eng.175, 311–341 (1999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agmon, S. (1965). Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, Princeton, NJ.

  • D. N. Arnold (1982) ArticleTitleAn interior penalty finite element method with discontinuous element SIAM J Numer. Anal. 19 742–760 Occurrence Handle10.1137/0719052

    Article  Google Scholar 

  • D. N. Arnold F. Brezzi B. Cockburn L. D. Marini (2002) ArticleTitleUnified analysis of discontinuous galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749–1779 Occurrence Handle10.1137/S0036142901384162

    Article  Google Scholar 

  • F. Bassi S. Rebay (1995) Discontinuous finite element high order accurate numerical solution of the compressible Navier–Stokes equations K. W. Morton (Eds) et al. Proceedings of the Conference “Numerical methods for fluid dynamics V’’ April 3–6 Clarendon Press Oxford 295–302

    Google Scholar 

  • P. Bastian B. Rivière (2003) ArticleTitleSuperconvergence and H(div) projection for discontinuous Galerkin methods Int. J. Numer. Meth. Fluids 42 1043–1057 Occurrence Handle10.1002/fld.562

    Article  Google Scholar 

  • C. E. Baumann J. T. Oden (1999) ArticleTitleA discontinuous hp finite element method for convection-diffusion problems Comput. Meth. Appl. Mech. Eng. 175 311–341 Occurrence Handle10.1016/S0045-7825(98)00359-4

    Article  Google Scholar 

  • F. Brezzi J. Douglas L. D. Marini SuffixJr. (1985) ArticleTitleTwo families of mixed finite elements for second order elliptic problems Numer. Math. 47 217–235 Occurrence Handle10.1007/BF01389710

    Article  Google Scholar 

  • Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A. (1999). Discontinuous finite elements for diffusion problems. Atti Convegno in onore di F. Brioschi (Milano 1997), Istituto Lombardo, Accademia di Scienze e Lettere, pp. 197–217.

  • F. Brezzi G. Manzini D. Marini P. Pietra A. Russo (2000) ArticleTitleDiscontinuous Galerkin approximations for elliptic problems Numer. Meth. Partial Differential Equations 16 365–378 Occurrence Handle10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y

    Article  Google Scholar 

  • F. Brezzi L. D. Marini E. Süli (2004) ArticleTitleDiscontinuous Galerkin methods for first-order hyperbolic problem Math. Models Meth. Appl. Sci. 14 12

    Google Scholar 

  • P. G. Ciarlet (1978) The Finite Element Methods for Elliptic Problems North-Holland Amsterdam

    Google Scholar 

  • B. Cockburn C. Dawson (2000) Some extension of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions J. R. Whiteman (Eds) Proc. MAFELAP X Elsevier Amsterdam 225–238

    Google Scholar 

  • B. Cockburn C. Dawson (2002) ArticleTitleApproximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems Comput. Geosciences 6 502–522

    Google Scholar 

  • B. Cockburn G. E. Karniadakis C.-W. Shu (Eds) (2000) Discontinuous Glerkin methods: Theory, computation and applications. Lecture Notes Computational Science and Engineering Vol. 11 Springer Berlin

    Google Scholar 

  • M. Dauge (1988) Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. Lect Notes Math, Vol. 1341 Springer Berlin

    Google Scholar 

  • J. Douglas SuffixJr. T. Dupont (1976) Interior penalty procedures for elliptic and parabolic Galerkin methods. Lecture Notes in Physics, Vol. 58 Springer Berlin

    Google Scholar 

  • T.J. R. Hughes L. P. Franca M. Balestra (1986) ArticleTitleA new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations Comput. Meth. Appl. Mech. Eng. 59 85–99 Occurrence Handle10.1016/0045-7825(86)90025-3

    Article  Google Scholar 

  • Hughes, T. J. R., Masud, A., and Wan, J. A. stabilized mixed discontinuous Galerkin method for Darcy flow, in preparation.

  • A. Masud T. J. R. Hughes (2002) ArticleTitleA stabilized mixed finite element method for Darcy flow Comput. Meth. Appl. Mech. Eng. 191 4341–4370 Occurrence Handle10.1016/S0045-7825(02)00371-7

    Article  Google Scholar 

  • P. A. Raviart J. M. Thomas (1977) A mixed finite element method for second order elliptic problems I. Galligani E. Magenes (Eds) Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. Springer-Verlag New York 292–315

    Google Scholar 

  • M. F. Wheeler (1978) ArticleTitleAn elliptic collocation-finite element method with interior penalties SIAM J. Numer. Anal. 15 152–161 Occurrence Handle10.1137/0715010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Brezzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brezzi, F., Hughes, T., Marini, L. et al. Mixed Discontinuous Galerkin Methods for Darcy Flow. J Sci Comput 22, 119–145 (2005). https://doi.org/10.1007/s10915-004-4150-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-004-4150-8

Keywords

Navigation