Abstract
We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements (both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods (see e.g. D.N. Arnold et al. SIAM J. Numer. Anal.39, 1749–1779 (2002) and B. Cockburn, G.E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, (Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T.J.R. Hughes, Meth. Appl. Mech. Eng.191, 4341–4370 (2002) and T.J.R. Hughes, A. Masud, and J. Wan, (in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree ≥ 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T.J.R. Hughes, Meth. Appl. Mech. Eng.191, 4341–4370 (2002) and T.J.R. Hughes, A. Masud, and J. Wan, (in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods (namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference ‘‘Numerical methods for fluid dynamics V’‘, Clarendon Press, Oxford (1995) and Baumann–Oden Comput. Meth. Appl. Mech. Eng.175, 311–341 (1999).
Similar content being viewed by others
References
Agmon, S. (1965). Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, Princeton, NJ.
D. N. Arnold (1982) ArticleTitleAn interior penalty finite element method with discontinuous element SIAM J Numer. Anal. 19 742–760 Occurrence Handle10.1137/0719052
D. N. Arnold F. Brezzi B. Cockburn L. D. Marini (2002) ArticleTitleUnified analysis of discontinuous galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749–1779 Occurrence Handle10.1137/S0036142901384162
F. Bassi S. Rebay (1995) Discontinuous finite element high order accurate numerical solution of the compressible Navier–Stokes equations K. W. Morton (Eds) et al. Proceedings of the Conference “Numerical methods for fluid dynamics V’’ April 3–6 Clarendon Press Oxford 295–302
P. Bastian B. Rivière (2003) ArticleTitleSuperconvergence and H(div) projection for discontinuous Galerkin methods Int. J. Numer. Meth. Fluids 42 1043–1057 Occurrence Handle10.1002/fld.562
C. E. Baumann J. T. Oden (1999) ArticleTitleA discontinuous hp finite element method for convection-diffusion problems Comput. Meth. Appl. Mech. Eng. 175 311–341 Occurrence Handle10.1016/S0045-7825(98)00359-4
F. Brezzi J. Douglas L. D. Marini SuffixJr. (1985) ArticleTitleTwo families of mixed finite elements for second order elliptic problems Numer. Math. 47 217–235 Occurrence Handle10.1007/BF01389710
Brezzi, F., Manzini, G., Marini, D., Pietra, P., and Russo, A. (1999). Discontinuous finite elements for diffusion problems. Atti Convegno in onore di F. Brioschi (Milano 1997), Istituto Lombardo, Accademia di Scienze e Lettere, pp. 197–217.
F. Brezzi G. Manzini D. Marini P. Pietra A. Russo (2000) ArticleTitleDiscontinuous Galerkin approximations for elliptic problems Numer. Meth. Partial Differential Equations 16 365–378 Occurrence Handle10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
F. Brezzi L. D. Marini E. Süli (2004) ArticleTitleDiscontinuous Galerkin methods for first-order hyperbolic problem Math. Models Meth. Appl. Sci. 14 12
P. G. Ciarlet (1978) The Finite Element Methods for Elliptic Problems North-Holland Amsterdam
B. Cockburn C. Dawson (2000) Some extension of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions J. R. Whiteman (Eds) Proc. MAFELAP X Elsevier Amsterdam 225–238
B. Cockburn C. Dawson (2002) ArticleTitleApproximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems Comput. Geosciences 6 502–522
B. Cockburn G. E. Karniadakis C.-W. Shu (Eds) (2000) Discontinuous Glerkin methods: Theory, computation and applications. Lecture Notes Computational Science and Engineering Vol. 11 Springer Berlin
M. Dauge (1988) Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. Lect Notes Math, Vol. 1341 Springer Berlin
J. Douglas SuffixJr. T. Dupont (1976) Interior penalty procedures for elliptic and parabolic Galerkin methods. Lecture Notes in Physics, Vol. 58 Springer Berlin
T.J. R. Hughes L. P. Franca M. Balestra (1986) ArticleTitleA new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška–Brezzi condition a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations Comput. Meth. Appl. Mech. Eng. 59 85–99 Occurrence Handle10.1016/0045-7825(86)90025-3
Hughes, T. J. R., Masud, A., and Wan, J. A. stabilized mixed discontinuous Galerkin method for Darcy flow, in preparation.
A. Masud T. J. R. Hughes (2002) ArticleTitleA stabilized mixed finite element method for Darcy flow Comput. Meth. Appl. Mech. Eng. 191 4341–4370 Occurrence Handle10.1016/S0045-7825(02)00371-7
P. A. Raviart J. M. Thomas (1977) A mixed finite element method for second order elliptic problems I. Galligani E. Magenes (Eds) Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. Springer-Verlag New York 292–315
M. F. Wheeler (1978) ArticleTitleAn elliptic collocation-finite element method with interior penalties SIAM J. Numer. Anal. 15 152–161 Occurrence Handle10.1137/0715010
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brezzi, F., Hughes, T., Marini, L. et al. Mixed Discontinuous Galerkin Methods for Darcy Flow. J Sci Comput 22, 119–145 (2005). https://doi.org/10.1007/s10915-004-4150-8
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10915-004-4150-8