Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Material Properties of a Low Contraction and Resistivity Silicon–Aluminum Composite for Cryogenic Detectors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on the cryogenic properties of a low-contraction silicon–aluminum composite, namely Japan Fine Ceramics SA001, to use as a packaging structure for cryogenic silicon devices. SA001 is silicon–aluminum composite material (75% silicon by volume) and has a low thermal expansion coefficient (\(\sim \)1/3 that of aluminum). The superconducting transition temperature of SA001 is measured to be 1.18 K, which is in agreement with that of pure aluminum and is thus available as a superconducting magnetic shield material. The residual resistivity of SA001 is 0.065 µΩm, which is considerably lower than equivalent silicon–aluminum composite material. The measured thermal contraction of SA001 immersed in liquid nitrogen is \(\frac{L_{293\,\mathrm {K}}-L_{77\,\mathrm {K}}}{L_{293\,\mathrm {K}}}=0.12\%\), which is consistent with the expected rate obtained from the volume-weighted mean of the contractions of silicon and aluminum. The machinability of SA001 is also confirmed with a demonstrated fabrication of a conical feedhorn array, with a wall thickness of 100 µm. These properties are suitable for packaging applications for large-format superconducting detector devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://www.japan-fc.co.jp/en/products/cate01/cate0104/sisic75vol-sa001.html.

  2. \({T_c}\) of SA001 is defined at the temperature of half of the normal resistivity, which is consistent with the definition of \({T_c}\) of CE7 [6].

References

  1. B.R. Johnson, D. Flanigan, M.H. Abitbol, P.A.R. Ade, S. Bryan, H.M. Cho, R. Datta, P. Day, S. Doyle, K. Irwin, G. Jones, D. Li, P. Mauskopf, H. McCarrick, J. McMahon, A. Miller, G. Pisano, Y. Song, H. Surdi, C. Tucker, J. Low Temp. Phys. 193(3–4), 103 (2018). https://doi.org/10.1007/s10909-018-2032-y

    Article  Google Scholar 

  2. H. McCarrick, E. Healy, Z. Ahmed, K. Arnold, Z. Atkins, J.E. Austermann, T. Bhandarkar, J.A. Beall, S.M. Bruno, S.K. Choi, J. Connors, N.F. Cothard, K.D. Crowley, S. Dicker, B. Dober, C.J. Duell, S.M. Duff, D. Dutcher, J.C. Frisch, N. Galitzki, M.B. Gralla, J.E. Gudmundsson, S.W. Henderson, G.C. Hilton, S.P.P. Ho, Z.B. Huber, J. Hubmayr, J. Iuliano, B.R. Johnson, A.M. Kofman, A. Kusaka, J. Lashner, A.T. Lee, Y. Li, M.J. Link, T.J. Lucas, M. Lungu, J.A.B. Mates, J.J. McMahon, M.D. Niemack, J. Orlowski-Scherer, J. Seibert, M. Silva-Feaver, S.M. Simon, S. Staggs, A. Suzuki, T. Terasaki, J.N. Ullom, E.M. Vavagiakis, L.R. Vale, J. Van Lanen, M.R. Vissers, Y. Wang, E.J. Wollack, Z. Xu, E. Young, C. Yu, K. Zheng, N. Zhu, Astrophys. J. 922(1), 38 (2021). https://doi.org/10.3847/1538-4357/ac2232

    Article  Google Scholar 

  3. K. Lee, J. Choi, R.T. Génova-Santos, M. Hattori, M. Hazumi, S. Honda, T. Ikemitsu, H. Ishida, H. Ishitsuka, Y. Jo, K. Karatsu, K. Kiuchi, J. Komine, R. Koyano, H. Kutsuma, S. Mima, M. Minowa, J. Moon, M. Nagai, T. Nagasaki, M. Naruse, S. Oguri, C. Otani, M. Peel, R. Rebolo, J.A. Rubiño-Martín, Y. Sekimoto, J. Suzuki, T. Taino, O. Tajima, N. Tomita, T. Uchida, E. Won, M. Yoshida, J. Low Temp. Phys. 200(5–6), 384 (2020). https://doi.org/10.1007/s10909-020-02511-5

    Article  Google Scholar 

  4. C.J. Duell, E.M. Vavagiakis, J. Austermann, S.C. Chapman, S.K. Choi, N.F. Cothard, B. Dober, P. Gallardo, J. Gao, C. Groppi, T.L. Herter, G.J. Stacey, Z. Huber, J. Hubmayr, D. Johnstone, Y. Li, P. Mauskopf, J. McMahon, M.D. Niemack, T. Nikola, K. Rossi, S. Simon, A.K. Sinclair, M. Vissers, J. Wheeler, B. Zou, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11453 (2020), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11453, p. 114531F. https://doi.org/10.1117/12.2562757

  5. A.M. Ali, T. Essinger-Hileman, T. Marriage, J.W. Appel, C.L. Bennett, M. Berkeley, B. Bulcha, S. Dahal, K.L. Denis, K. Rostem, K. U-Yen, E.J. Wollack, L. Zeng, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10708, ed. by J. Zmuidzinas, J.R. Gao (2018), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10708, p. 107082P. https://doi.org/10.1117/12.2312817

  6. A.M. Ali, T. Essinger-Hileman, T. Marriage, J.W. Appel, C.L. Bennett, M.R. Berkeley, B. Bulcha, D.T. Chuss, S. Dahal, K.L. Denis, K. Rostem, K. U-Yen, E.J. Wollack, L. Zeng, Rev. Sci. Instrum. 93(2), 024503 (2022). https://doi.org/10.1063/5.0049526

    Article  Google Scholar 

  7. S. Dahal, M. Amiri, J.W. Appel, C.L. Bennett, L. Corbett, R. Datta, K. Denis, T. Essinger-Hileman, M. Halpern, K. Helson, G. Hilton, J. Hubmayr, B. Keller, T. Marriage, C. Nunez, M. Petroff, C. Reintsema, K. Rostem, K. U-Yen, E. Wollack, J. Low Temp. Phys. 199(1–2), 289 (2020). https://doi.org/10.1007/s10909-019-02317-0

    Article  Google Scholar 

  8. S.M. Simon, J.A. Beall, N.F. Cothard, S.M. Duff, P.A. Gallardo, S.P. Ho, J. Hubmayr, B.J. Koopman, J.J. McMahon, F. Nati, M.D. Niemack, S.T. Staggs, E.M. Vavagiakis, E.J. Wollack, J. Low Temp. Phys. 193(5–6), 1041 (2018). https://doi.org/10.1007/s10909-018-1963-7

    Article  Google Scholar 

  9. J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press, 2006). https://doi.org/10.1093/acprof:oso/9780198570547.001.0001

  10. T. Takekoshi, T. Minamidani, S. Nakatsubo, T. Oshima, M. Kawamura, H. Matsuo, T. Sato, N.W. Halverson, A.T. Lee, W.L. Holzapfel, Y. Tamura, A. Hirota, K. Suzuki, T. Izumi, K. Sorai, K. Kohno, R. Kawabe, IEEE Trans. Terahertz Sci. Technol. 2(6), 584 (2012). https://doi.org/10.1109/TTHZ.2012.2218102

    Article  Google Scholar 

  11. R.J. Corruccini, J.J. Gniewek, Thermal Expansion of Technical Solids at Low Temperatures: A Compilation from the Literature, vol. 29 (National Bureau of Standards, US Department of Commerce, 1961)

  12. K. Asada, M. Inoue, S. Matsushita, Greenland Telescope project Team, in New Trends in Radio Astronomy in the ALMA Era: The 30th Anniversary of Nobeyama Radio Observatory, Astronomical Society of the Pacific Conference Series, vol. 476, ed. by R. Kawabe, N. Kuno, S. Yamamoto (2013), Astronomical Society of the Pacific Conference Series, vol. 476, p. 243

Download references

Acknowledgements

Measurement samples of SA001 were provided by Japan Fine Ceramics Co., Ltd. This study was carried out under the Joint Research Program of the Institute of Low-Temperature Science, Hokkaido University (21G006, 21G024, 20G013, and 20G033). This study was carried out in cooperation with the Advanced Technology Center of the National Astronomical Observatory of Japan (NAOJ). This work was supported by NAOJ Research Coordination Committee, NINS, Grant Number 2101-0101, and JSPS KAKENHI Grant Number JP17H02872 and JP19K14754. T.T. is supported by MEXT Leading Initiative for Excellent Young Researchers Grant Number JPMXS0320200188. S.U. is financially supported by JSPS Research Fellowship for Young Scientists and accompanying Grants-in-Aid for JSPS Fellows (No.21J20742). The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Takekoshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takekoshi, T., Lee, K., Chin, K.W. et al. Material Properties of a Low Contraction and Resistivity Silicon–Aluminum Composite for Cryogenic Detectors. J Low Temp Phys 209, 1143–1150 (2022). https://doi.org/10.1007/s10909-022-02795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02795-9

Keywords

Navigation