Abstract
We report on the cryogenic properties of a low-contraction silicon–aluminum composite, namely Japan Fine Ceramics SA001, to use as a packaging structure for cryogenic silicon devices. SA001 is silicon–aluminum composite material (75% silicon by volume) and has a low thermal expansion coefficient (\(\sim \)1/3 that of aluminum). The superconducting transition temperature of SA001 is measured to be 1.18 K, which is in agreement with that of pure aluminum and is thus available as a superconducting magnetic shield material. The residual resistivity of SA001 is 0.065 µΩm, which is considerably lower than equivalent silicon–aluminum composite material. The measured thermal contraction of SA001 immersed in liquid nitrogen is \(\frac{L_{293\,\mathrm {K}}-L_{77\,\mathrm {K}}}{L_{293\,\mathrm {K}}}=0.12\%\), which is consistent with the expected rate obtained from the volume-weighted mean of the contractions of silicon and aluminum. The machinability of SA001 is also confirmed with a demonstrated fabrication of a conical feedhorn array, with a wall thickness of 100 µm. These properties are suitable for packaging applications for large-format superconducting detector devices.
Similar content being viewed by others
Notes
\({T_c}\) of SA001 is defined at the temperature of half of the normal resistivity, which is consistent with the definition of \({T_c}\) of CE7 [6].
References
B.R. Johnson, D. Flanigan, M.H. Abitbol, P.A.R. Ade, S. Bryan, H.M. Cho, R. Datta, P. Day, S. Doyle, K. Irwin, G. Jones, D. Li, P. Mauskopf, H. McCarrick, J. McMahon, A. Miller, G. Pisano, Y. Song, H. Surdi, C. Tucker, J. Low Temp. Phys. 193(3–4), 103 (2018). https://doi.org/10.1007/s10909-018-2032-y
H. McCarrick, E. Healy, Z. Ahmed, K. Arnold, Z. Atkins, J.E. Austermann, T. Bhandarkar, J.A. Beall, S.M. Bruno, S.K. Choi, J. Connors, N.F. Cothard, K.D. Crowley, S. Dicker, B. Dober, C.J. Duell, S.M. Duff, D. Dutcher, J.C. Frisch, N. Galitzki, M.B. Gralla, J.E. Gudmundsson, S.W. Henderson, G.C. Hilton, S.P.P. Ho, Z.B. Huber, J. Hubmayr, J. Iuliano, B.R. Johnson, A.M. Kofman, A. Kusaka, J. Lashner, A.T. Lee, Y. Li, M.J. Link, T.J. Lucas, M. Lungu, J.A.B. Mates, J.J. McMahon, M.D. Niemack, J. Orlowski-Scherer, J. Seibert, M. Silva-Feaver, S.M. Simon, S. Staggs, A. Suzuki, T. Terasaki, J.N. Ullom, E.M. Vavagiakis, L.R. Vale, J. Van Lanen, M.R. Vissers, Y. Wang, E.J. Wollack, Z. Xu, E. Young, C. Yu, K. Zheng, N. Zhu, Astrophys. J. 922(1), 38 (2021). https://doi.org/10.3847/1538-4357/ac2232
K. Lee, J. Choi, R.T. Génova-Santos, M. Hattori, M. Hazumi, S. Honda, T. Ikemitsu, H. Ishida, H. Ishitsuka, Y. Jo, K. Karatsu, K. Kiuchi, J. Komine, R. Koyano, H. Kutsuma, S. Mima, M. Minowa, J. Moon, M. Nagai, T. Nagasaki, M. Naruse, S. Oguri, C. Otani, M. Peel, R. Rebolo, J.A. Rubiño-Martín, Y. Sekimoto, J. Suzuki, T. Taino, O. Tajima, N. Tomita, T. Uchida, E. Won, M. Yoshida, J. Low Temp. Phys. 200(5–6), 384 (2020). https://doi.org/10.1007/s10909-020-02511-5
C.J. Duell, E.M. Vavagiakis, J. Austermann, S.C. Chapman, S.K. Choi, N.F. Cothard, B. Dober, P. Gallardo, J. Gao, C. Groppi, T.L. Herter, G.J. Stacey, Z. Huber, J. Hubmayr, D. Johnstone, Y. Li, P. Mauskopf, J. McMahon, M.D. Niemack, T. Nikola, K. Rossi, S. Simon, A.K. Sinclair, M. Vissers, J. Wheeler, B. Zou, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11453 (2020), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 11453, p. 114531F. https://doi.org/10.1117/12.2562757
A.M. Ali, T. Essinger-Hileman, T. Marriage, J.W. Appel, C.L. Bennett, M. Berkeley, B. Bulcha, S. Dahal, K.L. Denis, K. Rostem, K. U-Yen, E.J. Wollack, L. Zeng, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10708, ed. by J. Zmuidzinas, J.R. Gao (2018), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10708, p. 107082P. https://doi.org/10.1117/12.2312817
A.M. Ali, T. Essinger-Hileman, T. Marriage, J.W. Appel, C.L. Bennett, M.R. Berkeley, B. Bulcha, D.T. Chuss, S. Dahal, K.L. Denis, K. Rostem, K. U-Yen, E.J. Wollack, L. Zeng, Rev. Sci. Instrum. 93(2), 024503 (2022). https://doi.org/10.1063/5.0049526
S. Dahal, M. Amiri, J.W. Appel, C.L. Bennett, L. Corbett, R. Datta, K. Denis, T. Essinger-Hileman, M. Halpern, K. Helson, G. Hilton, J. Hubmayr, B. Keller, T. Marriage, C. Nunez, M. Petroff, C. Reintsema, K. Rostem, K. U-Yen, E. Wollack, J. Low Temp. Phys. 199(1–2), 289 (2020). https://doi.org/10.1007/s10909-019-02317-0
S.M. Simon, J.A. Beall, N.F. Cothard, S.M. Duff, P.A. Gallardo, S.P. Ho, J. Hubmayr, B.J. Koopman, J.J. McMahon, F. Nati, M.D. Niemack, S.T. Staggs, E.M. Vavagiakis, E.J. Wollack, J. Low Temp. Phys. 193(5–6), 1041 (2018). https://doi.org/10.1007/s10909-018-1963-7
J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press, 2006). https://doi.org/10.1093/acprof:oso/9780198570547.001.0001
T. Takekoshi, T. Minamidani, S. Nakatsubo, T. Oshima, M. Kawamura, H. Matsuo, T. Sato, N.W. Halverson, A.T. Lee, W.L. Holzapfel, Y. Tamura, A. Hirota, K. Suzuki, T. Izumi, K. Sorai, K. Kohno, R. Kawabe, IEEE Trans. Terahertz Sci. Technol. 2(6), 584 (2012). https://doi.org/10.1109/TTHZ.2012.2218102
R.J. Corruccini, J.J. Gniewek, Thermal Expansion of Technical Solids at Low Temperatures: A Compilation from the Literature, vol. 29 (National Bureau of Standards, US Department of Commerce, 1961)
K. Asada, M. Inoue, S. Matsushita, Greenland Telescope project Team, in New Trends in Radio Astronomy in the ALMA Era: The 30th Anniversary of Nobeyama Radio Observatory, Astronomical Society of the Pacific Conference Series, vol. 476, ed. by R. Kawabe, N. Kuno, S. Yamamoto (2013), Astronomical Society of the Pacific Conference Series, vol. 476, p. 243
Acknowledgements
Measurement samples of SA001 were provided by Japan Fine Ceramics Co., Ltd. This study was carried out under the Joint Research Program of the Institute of Low-Temperature Science, Hokkaido University (21G006, 21G024, 20G013, and 20G033). This study was carried out in cooperation with the Advanced Technology Center of the National Astronomical Observatory of Japan (NAOJ). This work was supported by NAOJ Research Coordination Committee, NINS, Grant Number 2101-0101, and JSPS KAKENHI Grant Number JP17H02872 and JP19K14754. T.T. is supported by MEXT Leading Initiative for Excellent Young Researchers Grant Number JPMXS0320200188. S.U. is financially supported by JSPS Research Fellowship for Young Scientists and accompanying Grants-in-Aid for JSPS Fellows (No.21J20742). The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Takekoshi, T., Lee, K., Chin, K.W. et al. Material Properties of a Low Contraction and Resistivity Silicon–Aluminum Composite for Cryogenic Detectors. J Low Temp Phys 209, 1143–1150 (2022). https://doi.org/10.1007/s10909-022-02795-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10909-022-02795-9