Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A variable neighborhood search algorithm for the \( (r{\mid }p) \) hub–centroid problem under the price war

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This study considers the \( (r{\mid }p) \) hub–centroid problem under the price war, which was recently proposed in the literature. The objective is profit maximization by choosing the best hub and spoke topology, with the corresponding price structure, in a leader–follower setting. Because this bi–level optimization problem is NP–hard, the use of metaheuristics is a natural choice for solving real–size instances. A variable neighborhood search algorithm is designed as a solution approach for the leader. The characterization of optimal routes under the price equilibrium is given in order to simplify and improve the algorithm. When it comes to the follower, we have shown how to reformulate in a linear fashion the initial non–linear model. The computational experiments are conducted on the CAB instances. The results of these experiments are thoroughly discussed, highlighting the effects of different parameters and providing some interesting managerial insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alekseeva, E., Kochetov, Yu.: Matheuristics and exact methods for the discrete (\(r|p\))-centroid problem. In: El-Ghazali, T. (ed.) Metaheuristics for bi-level optimization. Springer, Berlin (2013)

    Google Scholar 

  2. Alumur, S., Kara, B.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190(1), 1–21 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bhadury, J., Eiselt, H.A., Jaramillo, J.H.: An alternating heuristic for medianoid and centroid problems in the plane. Comput. Oper. Res. 30, 553–565 (2003)

    Article  Google Scholar 

  4. Bitran, G., Ferrer, J.C.: On pricing and composition of bundles. Prod. Oper. Manag. 16, 93–108 (2007)

    Article  Google Scholar 

  5. Campbell, J., O’Kelly, M.: Twenty-five years of hub location research. Transp. Sci. 46(2), 153–169 (2012). https://doi.org/10.1287/trsc.1120.0410

    Article  Google Scholar 

  6. Contreras, I.: Hub Location Problems. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds.) Location Science. Springer, Newyork (2015)

    Google Scholar 

  7. Čvokić, D.D., Kochetov, Y.A., Plyasunov, A.V.: A leader-follower hub location and pricing problem under fixed markups. In: Y.A. Kochetov et al. (eds.) DOOR 2016, LNCS 9869, pp. 350–363, Springer, Cham (2016) https://doi.org/10.1007/978-3-319-44914-2_2

  8. Čvokić, D.D., Kochetov, Y.A., Plyasunov, A.V.: The competitive hub location under the price war. In: Khachay M., Kochetov Y., Pardalos P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science, vol 11548, pp. 133–146. Springer, Cham (2019)

  9. Čvokić, D.D.: A leader-follower single allocation hub location problem under fixed markups. Filomat. 34(8), 2463–2484 (2020). https://doi.org/10.2298/FIL2008463C

    Article  MathSciNet  MATH  Google Scholar 

  10. Čvokić, D.D., Stanimirovic, Z.: A single allocation hub location and pricing problem. Comp. Appl. Math. 39, 40 (2020). https://doi.org/10.1007/s40314-019-1025-z

    Article  MathSciNet  MATH  Google Scholar 

  11. d’Aspremont, J., Gabszewicz, J.J., Thisse, J.F.: On Hotelling’s stability in competition. Econometrica 49, 1145–1150 (1979). https://doi.org/10.2307/1911955

    Article  MathSciNet  MATH  Google Scholar 

  12. Davydov, I.A., Kochetov, Y.A., Mladenovic, N., Urosevic, D.: Fast metaheuristics for the discrete (\(r{\mid }p\))-centroid problem. Auto Remot Control 75(4), 677–687 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  14. Farahani, R.Z., Hekmatfar, M., Arabani, A.B., Nikbakhsh, E.: Hub location problems: a review of models, classification, solution techniques, and applications. Comput Indus Eng 64(4), 1096–1109 (2013). https://doi.org/10.1016/j.cie.2013.01.012

    Article  Google Scholar 

  15. Hansen, P., Mladenović, N., Brimberg, J., Moreno Pérez, J.A.: Variable Neighborhood Search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, International Series in Operations Research & Management Science 272, pp. 57–97. Springer, Cham (2019)

    Google Scholar 

  16. Hekmatfar, M., Pishvaee, M.: Hub Location Problem. In: Zanjirani, R., Hekmatfar, M. (eds.) Facility Location. Physica-Verlag HD, Heidelberg (2009)

    Google Scholar 

  17. Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929). https://doi.org/10.2307/2224214

    Article  Google Scholar 

  18. Hsieh, S., Kao, S.: A survey of hub location problems. J. Interconnect. Netw. (2019). https://doi.org/10.1142/S021926591940005X

    Article  Google Scholar 

  19. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007). https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  20. Jankovic, O., Miskovic, S., Stanimirovic, Z., Todosijevic, R.: Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems. Annals OR 259(1–2), 191–216 (2017)

    Article  MathSciNet  Google Scholar 

  21. Kara, B.Y., Taner, M.R.: Hub location problems: the location of interacting facilities. In: Eiselt, H.A., Marianov, V. (eds) Foundations of Location Analysis, 1st edn., pp. 273–288. Springer (2011) https://doi.org/10.1007/978-1-4419-7572-0_12

  22. Kochetov, Y., Panin, A., Plyasunov, A.: Comparison of metaheuristics for the bilevel facility location and mill pricing problem. J. Appl. Indus. Math. 9(3), 392–401 (2015). https://doi.org/10.1134/S1990478915030102

    Article  MATH  Google Scholar 

  23. Küçükaydın, H., Aras, N., Altınel, İK.: A leader-follower game in competitive facility location. Comput. Oper. Res. 39(2), 437–448 (2012)

    Article  MathSciNet  Google Scholar 

  24. Lüer-Villagra, A., Marianov, V.: A competitive hub location and pricing problem. Eur. J. Oper. Res. 231(3), 734–744 (2013)

    Article  MathSciNet  Google Scholar 

  25. Mahmutogullari, I., Kara, B.: Hub location under competition. Eur. J. Oper. Res. 250(1), 214–225 (2016). https://doi.org/10.1016/j.ejor.2015.09.008

    Article  MathSciNet  MATH  Google Scholar 

  26. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)

    Article  MathSciNet  Google Scholar 

  27. Mladenović, N., Todosijević, R., Urošević, D.: Less is more. Inf. Sci. 326, 160–171 (2016). https://doi.org/10.1016/j.ins.2015.07.044

    Article  Google Scholar 

  28. O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. EJOR 32, 393–404 (1987)

    Article  MathSciNet  Google Scholar 

  29. O’Kelly, M.E., Luna, H.P.L., de Camargo, R.S., Miranda, G.: Hub location problems with price sensitive demands. Netw. Spat. Econ. 15(4), 917–945 (2015)

    Article  MathSciNet  Google Scholar 

  30. Panin, A., Pashchenko, M., Plyasunov, A.: Bilevel competitive facility location and pricing problems. Automat. Remote Control 75(4), 715–727 (2014). https://doi.org/10.1134/S0005117914040110

    Article  MathSciNet  MATH  Google Scholar 

  31. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: Heuristics for the facility location and design \( (1{\mid }1) \)-centroid problem on the plane. Comput. Optim. Appl. 45(1), 111–141 (2010). https://doi.org/10.1007/s10589-008-9170-0

    Article  MathSciNet  MATH  Google Scholar 

  32. Sasaki, M.: Hub network design model in a competitive environment with flow threshold. J. Oper. Res. Soc. Japan 48, 158–71 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Sasaki, M., Fukushima, M.: Stackelberg hub location problem. J. Oper. Res. Soc. Japan 44(4), 390–405 (2001). https://doi.org/10.1016/S0453-4514(01)80019-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Todosijevic, R., Urosevic, D., Mladenovic, N., Hanafi, S.: A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem. Optim. Lett. 11, 1109–1121 (2017). https://doi.org/10.1007/s11590-015-0867-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are sincerely grateful to the two anonymous reviewers for their critical reading and constructive input which helped us to improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrije D. Čvokić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the second author was supported by the Russian Foundation for Basic Research, Grant 18-07-00599. The research of the third author was supported by the program of fundamental scientific researches of the SB RAS. The research of the fourth author was partially supported by Serbian Ministry of Education, Science and Technological Development under the Grant No. 174010.

Appendix

Appendix

Tables 45, and 6 present the computational results concerning the profit values, running times and number of AH iterations. In the first three columns, the instance values for the inter–hub discount factor \( \alpha \), sensitivity parameter \( \varTheta \), and hub backbone size (‘# of hubs’) are given, respectively. For every instance, the VNS algorithm was executed for 10 times. The best leader’s profit value found among all 10 executions is given in the column ‘best profit’. The mean value of best leader’s profits regarding these 10 executions is presented in the column ‘avg. profit’. Similarly, the mean value of times (in seconds) for which the VNS has found best solution is given in the column ‘avg. best time (s)’. The mean total time (in seconds) of VNS executions is presented in the column ‘avg. run time (s)’. In the last column ‘# of AH iterations’, the number of AH iterations is given.

Table 4 Computational results for \( |N|=15 \)
Table 5 Computational results for \( |N|=20 \)
Table 6 Computational results when \( |N|=25 \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čvokić, D.D., Kochetov, Y.A., Plyasunov, A.V. et al. A variable neighborhood search algorithm for the \( (r{\mid }p) \) hub–centroid problem under the price war. J Glob Optim 83, 405–444 (2022). https://doi.org/10.1007/s10898-021-01036-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-021-01036-9

Keywords

Mathematics Subject Classification

Navigation