Abstract
In this paper, we establish necessary and sufficient conditions to characterize weakly efficient solutions in nonsmooth quasiconvex multiobjective programming. The results are proved in terms of the Greenberg–Pierskalla, Penot, Plastria, Gutiérrez and Suzuki–Kuroiwa subdifferentials. The established results can be used to provide powerful tools for sketching numerical algorithms and deriving duality results.
Similar content being viewed by others
References
Asadi, M.B., Soleimani-damaneh, M.: Infinite alternative theorems and nonsmooth constraint qualification conditions. Set-Valued Var. Anal. 20, 551–566 (2012)
Bagirov, A., Karmitsa, N., Makela, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham, Heidelberg (2014)
Bazaraa, M.S., Shetty, C.: Nonlinear Programming. Wiley, New York (1979)
Borwein, J., Lewis, A.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, Berlin (2006)
Burke, J.V., Ferris, M.C.: Characterization of the solution sets of convex programs. Oper. Res. Lett. 10, 57–60 (1991)
Clarke, F.H.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, London (2013)
Crouzeix, J.-P.: Continuity and differentiability properties of quasiconvex functions on \({\mathbb{R}}^n\). In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 109–130. Academic Press, New York (1981)
Crouzeix, J.-P.: About differentiability of order one of quasiconvex functions on \({\mathbb{R}}^n\). J. Optim. Theory Appl. 36, 367–385 (1982)
Daniilidis, A., Hadjisavvas, N., Martinez-Legaz, J.-E.: An appropriate subdifferential for quasiconvex functions. SIAM J. Optim. 12, 407–420 (2002)
Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)
Greenberg, H.P., Pierskalla, W.P.: Quasiconjugate function and surrogate duality. Cahiers du Centre d’Etude de Recherche Oper. 15, 437–448 (1973)
Gutiérrez, J.M.: A generalization of the quasiconvex optimization problem. J. Convex Anal. 4, 281–287 (1997)
Gutiérrez, J.M.: Infragradientes y direcciones de decrecimiento. Rev. Real A cad. C. Ex., Fis. y Nat. Madrid 78, 523–532 (1984)
Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms, I & II. Springer, Berlin, Heidelberg (1991)
Kanzi, N., Soleimani-damaneh, M.: Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems. J. Math. Anal. Appl. 434, 638–651 (2016)
Linh, N.T., Penot, J.P.: Optimality conditions for quasiconvex programming. SIAM J. Optim. 17, 500–510 (2006)
Martinez-Legaz, J.-E., Sach, P.H.: A new subdifferential in quasiconvex analysis. J. Convex Anal. 6, 1–12 (1999)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)
Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham (2018)
Penot, J.P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.-P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 3–59. Kluwer, Dordrecht (1998a)
Penot, J.P.: What is quasiconvex analysis? Optimization 47, 35–110 (1998b)
Penot, J.P.: Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117, 627–636 (2003)
Penot, J.P., Volle, V.: On quasi-convex duality. Math. Oper. Res. 15, 597–625 (1990)
Penot, J.P., Volle, V.: Surrogate programming and multipliers in quasiconvex programming. SIAM J. Control Optim. 42, 1994–2003 (2003)
Plastria, F.: Lower subdifferentiable functions and their minimization by cutting plane. J. Optim. Theory Appl. 46(1), 37–54 (1985)
Rahimi, M., Soleimani-damaneh, M.: Robustness in deterministic vector optimization. J. Optim. Theory Appl. 179, 137–162 (2018)
Slater, M.: Lagrange multipliers revisited. Cowles commission discussion paper, no. 403 (1950)
Soleimani-damaneh, M., Pourkarimi, L., Korhonen, P., Wallenius, J.: An operational test for existence of a consistent increasing quasi-concave value function (2019). arXiv:1909.08222
Suzuki, S., Kuroiwa, D.: Optimality conditions and the basic constraint qualification for quasiconvex programming. Nonlinear Anal. 74, 1279–1285 (2011)
Suzuki, S., Kuroiwa, D.: Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential. J. Global Optim. 62, 431–441 (2015)
Zamani, M., Soleimani-damaneh, M., Kabgani, A.: Robustness in nonsmooth nonlinear multi-objective programming. Eur. J. Oper. Res. 247, 370–378 (2015)
Acknowledgements
The authors would like to express their gratitude to the editor in chief of JOGO, handling editor, and anonymous referee for their helpful comments on the earlier versions of the paper. The work of the second author was in part supported by the Iran National Science Foundation (INSF) (Grant 98009933).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kanzi, N., Soleimani-damaneh, M. Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization. J Glob Optim 77, 627–641 (2020). https://doi.org/10.1007/s10898-020-00893-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-020-00893-0
Keywords
- Quasiconvex function
- Multiobjective programming
- Nonsnmooth optimization
- Constraint qualification
- Optimality conditions