Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we establish necessary and sufficient conditions to characterize weakly efficient solutions in nonsmooth quasiconvex multiobjective programming. The results are proved in terms of the Greenberg–Pierskalla, Penot, Plastria, Gutiérrez and Suzuki–Kuroiwa subdifferentials. The established results can be used to provide powerful tools for sketching numerical algorithms and deriving duality results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asadi, M.B., Soleimani-damaneh, M.: Infinite alternative theorems and nonsmooth constraint qualification conditions. Set-Valued Var. Anal. 20, 551–566 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bagirov, A., Karmitsa, N., Makela, M.M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham, Heidelberg (2014)

    Book  Google Scholar 

  3. Bazaraa, M.S., Shetty, C.: Nonlinear Programming. Wiley, New York (1979)

    MATH  Google Scholar 

  4. Borwein, J., Lewis, A.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, Berlin (2006)

    Book  Google Scholar 

  5. Burke, J.V., Ferris, M.C.: Characterization of the solution sets of convex programs. Oper. Res. Lett. 10, 57–60 (1991)

    Article  MathSciNet  Google Scholar 

  6. Clarke, F.H.: Functional Analysis, Calculus of Variations and Optimal Control. Springer, London (2013)

    Book  Google Scholar 

  7. Crouzeix, J.-P.: Continuity and differentiability properties of quasiconvex functions on \({\mathbb{R}}^n\). In: Schaible, S., Ziemba, W.T. (eds.) Generalized Concavity in Optimization and Economics, pp. 109–130. Academic Press, New York (1981)

    Google Scholar 

  8. Crouzeix, J.-P.: About differentiability of order one of quasiconvex functions on \({\mathbb{R}}^n\). J. Optim. Theory Appl. 36, 367–385 (1982)

    Article  MathSciNet  Google Scholar 

  9. Daniilidis, A., Hadjisavvas, N., Martinez-Legaz, J.-E.: An appropriate subdifferential for quasiconvex functions. SIAM J. Optim. 12, 407–420 (2002)

    Article  MathSciNet  Google Scholar 

  10. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    MATH  Google Scholar 

  11. Greenberg, H.P., Pierskalla, W.P.: Quasiconjugate function and surrogate duality. Cahiers du Centre d’Etude de Recherche Oper. 15, 437–448 (1973)

    MATH  Google Scholar 

  12. Gutiérrez, J.M.: A generalization of the quasiconvex optimization problem. J. Convex Anal. 4, 281–287 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Gutiérrez, J.M.: Infragradientes y direcciones de decrecimiento. Rev. Real A cad. C. Ex., Fis. y Nat. Madrid 78, 523–532 (1984)

  14. Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms, I & II. Springer, Berlin, Heidelberg (1991)

    MATH  Google Scholar 

  15. Kanzi, N., Soleimani-damaneh, M.: Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems. J. Math. Anal. Appl. 434, 638–651 (2016)

    Article  MathSciNet  Google Scholar 

  16. Linh, N.T., Penot, J.P.: Optimality conditions for quasiconvex programming. SIAM J. Optim. 17, 500–510 (2006)

    Article  MathSciNet  Google Scholar 

  17. Martinez-Legaz, J.-E., Sach, P.H.: A new subdifferential in quasiconvex analysis. J. Convex Anal. 6, 1–12 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Springer, Berlin (2006)

    Book  Google Scholar 

  19. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham (2018)

    Book  Google Scholar 

  20. Penot, J.P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.-P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 3–59. Kluwer, Dordrecht (1998a)

    Chapter  Google Scholar 

  21. Penot, J.P.: What is quasiconvex analysis? Optimization 47, 35–110 (1998b)

    Article  MathSciNet  Google Scholar 

  22. Penot, J.P.: Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117, 627–636 (2003)

    Article  MathSciNet  Google Scholar 

  23. Penot, J.P., Volle, V.: On quasi-convex duality. Math. Oper. Res. 15, 597–625 (1990)

    Article  MathSciNet  Google Scholar 

  24. Penot, J.P., Volle, V.: Surrogate programming and multipliers in quasiconvex programming. SIAM J. Control Optim. 42, 1994–2003 (2003)

    Article  Google Scholar 

  25. Plastria, F.: Lower subdifferentiable functions and their minimization by cutting plane. J. Optim. Theory Appl. 46(1), 37–54 (1985)

    Article  MathSciNet  Google Scholar 

  26. Rahimi, M., Soleimani-damaneh, M.: Robustness in deterministic vector optimization. J. Optim. Theory Appl. 179, 137–162 (2018)

    Article  MathSciNet  Google Scholar 

  27. Slater, M.: Lagrange multipliers revisited. Cowles commission discussion paper, no. 403 (1950)

  28. Soleimani-damaneh, M., Pourkarimi, L., Korhonen, P., Wallenius, J.: An operational test for existence of a consistent increasing quasi-concave value function (2019). arXiv:1909.08222

  29. Suzuki, S., Kuroiwa, D.: Optimality conditions and the basic constraint qualification for quasiconvex programming. Nonlinear Anal. 74, 1279–1285 (2011)

    Article  MathSciNet  Google Scholar 

  30. Suzuki, S., Kuroiwa, D.: Characterizations of the solution set for quasiconvex programming in terms of Greenberg–Pierskalla subdifferential. J. Global Optim. 62, 431–441 (2015)

    Article  MathSciNet  Google Scholar 

  31. Zamani, M., Soleimani-damaneh, M., Kabgani, A.: Robustness in nonsmooth nonlinear multi-objective programming. Eur. J. Oper. Res. 247, 370–378 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the editor in chief of JOGO, handling editor, and anonymous referee for their helpful comments on the earlier versions of the paper. The work of the second author was in part supported by the Iran National Science Foundation (INSF) (Grant 98009933).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Soleimani-damaneh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanzi, N., Soleimani-damaneh, M. Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization. J Glob Optim 77, 627–641 (2020). https://doi.org/10.1007/s10898-020-00893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00893-0

Keywords

Mathematics Subject Classification

Navigation