Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Global optimization of grillage-type foundations using a distributed genetic algorithm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, the optimal design of grillage-type foundations is considered. A difficult black-box global optimization problem should be solved to find the optimal positions of piles in this type of foundations. The goal of the research was to enable the solution of real grillage problems by distributed (volunteer) computing using the open infrastructure for network computing BOINC. A distributed genetic algorithm has been developed as well as its implementation on a computational BOINC platform. The algorithm is adapted to suit the BOINC platform and cope with possible occasional faults of client computers. The results of the proposed algorithm are compared with those attained by using the simulated annealing algorithm running on a computational grid infrastructure which previously showed the best performance. The results on 10 real grillage foundations and quantitative comparison reveal that the performance of the proposed algorithm is better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen, B., et al.: The Einstein@Home search for radio pulsars and PSR J2007+2722 discovery. Astrophys. J. 773(2), 91 (2013)

    Article  Google Scholar 

  2. Anderson, D.P.: BOINC: a system for public resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pp. 1–7 (2004). https://doi.org/10.1109/GRID.2004.14

  3. Baravykaitė, M., Belevičius, R., Čiegis, R.: One application of the parallelization tool of Master–Slave algorithms. Informatica 13(4), 393–404 (2002)

    MATH  Google Scholar 

  4. Belevičius, R., Šešok, D.: Global optimization of grillages using genetic algorithms. Mechanika 6(74), 38–44 (2008)

    MATH  Google Scholar 

  5. Belevičius, R., Mačiūnas, D.,Šešok, D.: Momentu̧ ir reakciju̧ minimizavimasrostverkiniuose pamatu̧ sijynuose genetiniu algoritmu.Statybinės konstrukcijos ir technologijos = Engineeringstructures and technologies 3(2), 56–63 (2011)

  6. Belevičius, R., Valentinavičius, S.: Optimization of grillage-type foundations. J. Civ. Eng. Manag. 6(6), 255–261 (2000)

    Article  Google Scholar 

  7. Bowles, J.E.: Foundation Analysis and Design, 5th edn. The McGraw-Hill Companies Inc, New York (1996)

    Google Scholar 

  8. Čiegis, R., Baravykaite, M., Belevičius, R.: Parallel global optimisation of foundation schemes in civil engineering. Lecture Notes in Computer Science. In: Dongarra J., Madsen K., Wasniewski J. (eds.) 7th International Conference on Applied Parallel Computing: State of the Art in Scientific Computing, PARA 2004, Lyngby, Denmark, June 20–23. Revised Selected Papers. vol. 3732, pp. 305–312. Springer, Berlin (2006)

  9. Čiegis, R., Starikovičius, V., Tumanova, N., Ragulskis, M.: Application of distributed parallel computing for dynamic visual cryptography. J. Supercomput. 72(11), 4204–4220 (2016). https://doi.org/10.1007/s11227-016-1733-8

    Article  Google Scholar 

  10. Corcoran, A.L., Wainwright, R.L.: A parallel island model genetic algorithm for the multiprocessor scheduling problem. In: Proceedings of the 1994 ACM Symposium on Applied Computing, 483-487, (1994)

  11. Ferrucci, F., Salza, P., Sarro, F.: Using Hadoop MapReduce for parallel genetic algorithms: a comparison of the global, grid and island models. Evolut. Comput. 26(4), 535–567 (2017)

    Article  Google Scholar 

  12. Kim, K.N., Lee, S.H., Kim, K.S., Chung, C.K., Kim, M.M., Lee, H.S.: Optimal pile arrangement for minimizing differential settlements in piled raft foundations. Comput. Geotech. 28, 235–253 (2001)

    Article  Google Scholar 

  13. Korpela, E.J.: SETI@Home, BOINC, and volunteer distributed computing. Annu. Rev. Earth Planet. Sci. 40(1), 69–87 (2012)

    Article  Google Scholar 

  14. Kripka, M., Stochastic optimization applied to R-C building grillages. In: Proceedings of 6th World Congress of Structural and Multidisciplinary Optimization. CD-ROM, Rio de Janeiro, Brazil, 30 May–03 June (2005)

  15. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applications. Studies in Computational Intelligence, vol. 367. Springer, Berlin (2011)

    Book  Google Scholar 

  16. Muszynski, J.: Cheating-Tolerance of Parallel and Distributed Evolutionary Algorithms in Desktop Grids and Volunteer Computing Systems. Thesis (2015)

  17. Nogueras, R., Cotta, C.: Analyzing resilience to computational glitches in island-based evolutionary algorithms. In: Auger, A., Fonseca, C., Lourenco, N., Machado, P., Paquete, L., Whitley, D. (eds.) Parallel Problem Solving from Nature–PPSN XV PPSN 2018. Lecture Notes in Computer Science, vol. 11101, pp. 411–423 (2018)

  18. Ramanauskas, M., Šešok, D., Belevičius, R., Kurilov, J., Valentinavičius, S.: Genetic algorithm with modified crossover for grillage optimization. Int. J. Comput. Commun. Control 12(3), 393–401 (2017)

    Article  Google Scholar 

  19. Reese, L.C., Isenhower, W.M., Wang, S.-T.: Analysis and Design of Shallow and Deep Foundations. Wiley, Hoboken (2005)

    Book  Google Scholar 

  20. Šešok, D., Belevičius, R., Kačeniauskas, A., Mockus, J.: Application of GRID computing for optimization of grillages. Mechanika 2(82), 63–69 (2010)

    Google Scholar 

  21. Šešok, D., Mockus, J., Belevičius, R., Kačeniauskas, A.: Global optimization of grillages using simulated annealing and high performance computing. J. Civ. Eng. Manag. 16(1), 95–101 (2010)

    Article  Google Scholar 

  22. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 6th edn. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

  23. Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). https://doi.org/10.3846/1392-6292.2008.13.145-159

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Žilinskas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanauskas, M., Šešok, D., Žilinskas, J. et al. Global optimization of grillage-type foundations using a distributed genetic algorithm. J Glob Optim 77, 157–173 (2020). https://doi.org/10.1007/s10898-019-00838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00838-2

Keywords

Navigation