Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A special three-level optimization problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

A special linear, three-level optimization problem is considered where the reaction of the third-level decision maker influences the objective functions of both decision makers on the first and the second level via its optimal objective function value. For this problem, existence of an optimal solution as well as its computation are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alizadeh, S.M., Marcotte, P., Savard, G.: Two-stage stochastic bilevel programming over a transportation network. Transp. Res. Part B: Methodol. 58, 92–105 (2013)

    Article  Google Scholar 

  2. Aussel, D., Bendotti, P., Pištěk, M.: Nash equilibrium in a pay-as-bid electricity market: part 1— existence and characterization. Optimization 66, 1013–1025 (2017)

    Article  MathSciNet  Google Scholar 

  3. Aussel, D., Bendotti, P., Pištěk, M.: Nash equilibrium in a pay-as-bid electricity market part 2—best response of a producer. Optimization 66, 1027–1053 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Birkhäuser Verlag, Basel (1983)

    MATH  Google Scholar 

  5. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  6. Camacho-Vallejo, J.-F., González-Rodríguez, E., Almaguer, F.-J., González-Ramírez, R.G.: A bi-level optimization model for aid distribution after the occurrence of a disaster. J. Clean. Prod. 105, 134–145 (2014)

    Article  Google Scholar 

  7. Dempe, S.: Foundations of Bilevel Programming. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  8. Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization 52, 333–359 (2003)

    Article  MathSciNet  Google Scholar 

  9. Dempe, S., Dutta, J.: Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program. 131, 37–48 (2012)

    Article  MathSciNet  Google Scholar 

  10. Dempe, S., Franke, S.: Solution of bilevel optimization problems using the KKT approach. Optimization 68, 1471–1489 (2019)

    Article  MathSciNet  Google Scholar 

  11. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems: Theory, Algorithms and Application to Energy Networks. Springer, Berlin (2015)

    Book  Google Scholar 

  12. Florensa, C., Garcia-Herreros, P., Misra, P., Arslan, E., Mehta, S., Grossmann, I.E.: Capacity planning with competitive decision-makers: trilevel MILP formulation, degeneracy, and solution approaches. Eur. J. Oper. Res. 262, 449–463 (2017)

    Article  MathSciNet  Google Scholar 

  13. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Scientific Press, San Francisco (1993)

    MATH  Google Scholar 

  14. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. Res. Nat. Bur. Stand. 49, 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  15. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 137(1–2), 257–288 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kochetov, Y., Kochetova, N., Plyasunov, A.: A matheuristic for the leader-follower facility location and design problem. In: Proceedings of the 10th Metaheuristics International Conference (MIC 2013), vol. 32. Citeseer (2013)

  17. Mersha, A.G.: Solution methods for bilevel programming problems, Ph.D. thesis, TU Bergakademie Freiberg (2008)

  18. Mersha, A.G., Dempe, S.: Feasible direction method for bilevel programming problem. Optimization 61(4–6), 597–616 (2012)

    Article  MathSciNet  Google Scholar 

  19. Outrata, J., Kočvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  21. Rog, R.: Solution algorithms for the KKT-transformation of bilevel optimization problems, Master’s thesis, TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik, 2017, in German language. Title: Lösungsalgorithmen für die KKT-Transformation von Zwei-Ebenen-Optimierungsaufgaben (2017)

  22. Sadatrasou, S.M., Gholamian, M.R., Shahanaghi, K.: An application of data mining classification and bi-level programming for optimal credit allocation. Decision Sci. Lett. 4, 35–50 (2015)

    Article  Google Scholar 

  23. Sadeghi, S., Seifi, A., Azizi, E.: Trilevel shortest path network interdiction with partial fortification. Comput. Ind. Eng. 106, 400–411 (2017)

    Article  Google Scholar 

  24. Scheel, H., Scholtes, S.: Mathematical programs with equilibrium constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  Google Scholar 

  25. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11, 918–936 (2001)

    Article  MathSciNet  Google Scholar 

  26. Shimizu, K., Ishizuka, Y., Bard, J.F.: Nondifferentiable and Two-Level Mathematical Programming. Kluwer, Dordrecht (1997)

    Book  Google Scholar 

  27. Ward, J.E., Wendell, R.E.: Approaches to sensitivity analysis in linear programming. Ann. Oper. Res. 27(1), 3–38 (1990)

    Article  MathSciNet  Google Scholar 

  28. Ye, J.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 30, 350–369 (2005)

    Article  MathSciNet  Google Scholar 

  29. Zhang, G., Lu, J., Gao, Y.: Multi-level Decision Making: Models, Methods and Applications, vol. 82. Springer, Berlin (2015)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dempe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author’s work has been supported by Deutsche Forschungsgemeinschaft, Project DE650/10. The second author’s work has been supported by the Russian Science Foundation, Project 17-11-01021. The last author’s work has been supported by the Ministry of Science and Education of the Russian Federation under the 5-100 Excellence Programme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dempe, S., Khamisov, O. & Kochetov, Y. A special three-level optimization problem. J Glob Optim 76, 519–531 (2020). https://doi.org/10.1007/s10898-019-00822-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00822-w

Keywords

Mathematics Subject Classification

Navigation