Abstract
This paper proposes an efficient method for solving complex multicriterial optimization problems, for which the optimality criteria may be multiextremal and the calculations of the criteria values may be time-consuming. The approach involves reducing multicriterial problems to global optimization ones through minimax convolution of partial criteria, reducing dimensionality by using Peano curves and implementing efficient information-statistical methods for global optimization. To efficiently find the set of Pareto-optimal solutions, it is proposed to reuse all the search information obtained in the course of optimization. The results of computational experiments indicate that the proposed approach greatly reduces the computational complexity of solving multicriterial optimization problems.
Similar content being viewed by others
References
Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Glob. Optim. 1–18 (2015). https://doi.org/10.1007/s10898-016-0411-y
Barkalov, K., Gergel, V., Lebedev, I.: Use of xeon phi coprocessor for solving global optimization problems. In: LNCS, vol. 9251, pp. 307–318. Springer, Heidelberg (2015)
Barkalov, K., Gergel, V., Lebedev, I.: Solving global optimization problems on GPU cluster. In: Simos T.E. (ed.) ICNAAM 2015, AIP Conference Proceedings, vol. 1738, No. 400006 (2016)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA-A platform and programming language independent interface for search algorithms. In: Evolutionary Multi-Criterion Optimization, LNCS, vol. 2632, pp. 494–508 (2003)
Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multi-Objective Optimization-Interactive and Evolutionary Approaches. Springer, Berlin (2008)
Collette, Y., Siarry, P.: Multiobjective Optimization: Principles and Case Studies (Decision Engineering). Springer, Berlin (2011)
Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007). https://doi.org/10.1007/s10479-007-0186-0
Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.E.: Comparison of multi-objective optimization methodologies for engineering applications. Comput. Math. Appl. 63(5), 912–942 (2012)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)
Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005)
Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009)
Evtushenko, YuG, Posypkin, M.A.: Method of non-uniform coverages to solve the multicriteria optimization problems with guaranteed accuracy. Autom. Remote Control 75(6), 1025–1040 (2014)
Figueira, J., Greco, S., Ehrgott, M. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2005)
Floudas, C.A., Pardalos, M.P.: Recent Advances in Global Optimization. Princeton University Press, Princeton (2016)
Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Glob. Optim. 21(1), 27–37 (2001)
Gaviano, M., Lera, D., Kvasov, D.E., Sergeyev, Y.D.: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 29, 469–480 (2003)
Gergel, V.: A unified approach to use of coprocessors of various types for solving global optimization problems. In: 2nd International Conference on Mathematics and Computers in Sciences and in Industry, pp. 13–18 (2015). https://doi.org/10.1109/MCSI.2015.18
Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)
Gergel, V., Lebedev, I.: Heterogeneous parallel computations for solving global optimization problems. Procedia Comput. Sci. 66, 53–62 (2015). https://doi.org/10.1007/s10898-016-0411-y
Gergel, V., Sidorov, S.: A two-level parallel global search algorithm for solution of computationally intensive multiextremal optimization problems. In: LNCS, vol. 9251, pp. 505–515. Springer, Berlin (2015)
Germeyer, YuB: Introduction in Theory of Operation Research. Nauka, Moscow (1971). (In Russian)
Grishagin, V.A.: Operating characteristics of some global search algorithms. Probl. Stoch. Search 7, 198–206 (1978). (In Russian)
Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristic algorithms for solving problems of global optimization. J. Glob. Optim. 10, 185–206 (1997)
Hill, J.D.: A search technique for multimodal surfaces. IEEE Trans. Syst. Cybern. 5(1), 2–8 (1969)
Hillermeier, C., Jahn, J.: Multiobjective optimization: survey of methods and industrial applications. Surv. Math. Ind. 11, 1–42 (2005)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1990)
Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal GO methods. Numer. Math. 94(1), 93–106 (2003)
Köksalan, M., Wallenius, J., Zionts, S.: Multiple Criteria Decision Making: From Early History to the 21st Century. World Scientific, Singapore (2011)
Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Applications. SIAM, Philadelphia (2013)
Mardani, A., Jusoh, A., Nor, K., Khalifah, Z., Zakwan, N., Valipour, A.: Multiple criteria decision-making techniques and their applications–a review of the literature from 2000 to 2014. Econ. Res.-Ekon. Istraž. 28(1), 516–571 (2015). https://doi.org/10.1080/1331677X.2015.1075139
Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26, 369–395 (2004)
Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Boston (1999)
Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dortrecht (1996)
Pardalos, P.M., Žilinskas, A., Žilinskas, J.: Non-Convex Multi-Objective Optimization. Springer, New York (2017)
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, Berlin (2014)
Sergeyev, Y.D., Famularo, D., Pugliese, P.: Index branch-and-bound algorithm for Lipschitz univariate global optimization with multiextremal constraints. J. Glob. Optim. 21(3), 317–341 (2001)
Sergeyev, Y.D., Grishagin, V.A.: Sequential and parallel algorithms for global optimization. Optim. Methods Softw. 3, 111–124 (1994)
Sergeyev, Y.D., Grishagin, V.A.: Parallel asynchronous global search and the nested optimization scheme. J. Comput. Anal. Appl. 3(2), 123–145 (2001)
Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)
Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York (2013)
Siwale, I.: Practical multi-objective programming. Technical Report RD-14-2013. Apex Research Limited (2014)
Strongin, R.G.: Numerical Methods in Multiextremal Problems: Information-Statistical Algorithms. Nauka, Moscow (1978). (In Russian)
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints. Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000, 2nd ed. 2013, 3rd ed. 2014)
Strongin, R.G., Gergel, V.P., Markin, D.L.: Multicriterion multiextreme optimization with nonlinear constraints. In: Lecture Notes in Economics and Mathematical Systems, vol. 351, pp. 120–127 (1988)
Tan, K.C., Khor, E.F., Lee, T.H.: Multi-Objective Evolutionary Algorithms and Applications. Springer, London (2005)
Törn, A., Žilinskas, A.: Global optimization. In: LNCS, vol. 350. Springer, Berlin (1989)
Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Frome (2008)
Zavadskas, E.K., Turskis, Z., Kildienė, S.: State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 20, 165–179 (2014)
Zhigljavsky, A.A.: Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht (1991)
Žilinskas, A., Žilinskas, J.: Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems. Commun. Nonlinear Sci. Numer. Simul. 21, 89–98 (2015)
Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of Pareto set approximations. In: LNCS in Multiobjective Optimization-Interactive and Evolutionary Approaches. LNCS, vol. 5252, pp. 373–404 (2008)
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, Berlin (2008)
Acknowledgements
This work has been supported by the Russian Science Foundation, Project No. 16-11-10150 “Novel efficient methods and software tools for time-consuming decision making problems using superior-performance supercomputers”.
Author information
Authors and Affiliations
Corresponding author
Additional information
This study was supported by the Russian Science Foundation, Project No. 16-11-10150.
Rights and permissions
About this article
Cite this article
Gergel, V., Kozinov, E. Efficient multicriterial optimization based on intensive reuse of search information. J Glob Optim 71, 73–90 (2018). https://doi.org/10.1007/s10898-018-0624-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-018-0624-3