Abstract
Free-sign pure discrete signomial (FPDS) terms are vital to and are frequently observed in many nonlinear programming problems, such as geometric programming, generalized geometric programming, and mixed-integer non-linear programming problems. In this study, all variables in the FPDS term are discrete variables. Any improvement to techniques for linearizing FPDS term contributes significantly to the solving of nonlinear programming problems; therefore, relative techniques have continually been developed. This study develops an improved exact method to linearize a FPDS term into a set of linear programs with minimal logarithmic numbers of zero-one variables and constraints. This method is tighter than current methods. Various numerical experiments demonstrate that the proposed method is significantly more efficient than current methods, especially when the problem scale is large.
Similar content being viewed by others
References
Adams, W.P., Henry, S.M.: Base-2 expansions for linearizing products of functions of discrete variables. Oper. Res. 60(6), 701–713 (2012). doi:10.1287/opre.1120.1106
Bergamini, M.L., Scenna, N.J., Aguirre, P.A.: Global optimal structures of heat exchanger networks by piecewise relaxation. Ind. Eng. Chem. Res. 46(6), 1752–1763 (2007). doi:10.1021/ie061288p
Boyd, S.P., Kim, S.J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric programming. Oper. Res. 53(6), 899–932 (2005). doi:10.1287/opre.1050.0254
Cheng, H., Fang, S.C., Lavery, J.E.: A geometric programming framework for univariate cubic L1 smoothing splines. Ann. Oper. Res. 133(1–4), 229–248 (2005). doi:10.1007/s10479-004-5035-9
Chiang, M.: Geometric Programming for Communication Systems. Now Publishers Inc., Boston (2005)
Creese, R.C.: Geometric Programming for Design and Cost Optimization (with Illustrative Case Study Problems and Solutions), 2nd edn. Morgan & Claypool Publishers, California (2010)
Dam, S., Mandal, P.: Iterative performance model upgradation in geometric programming based analog circuit sizing for improved design accuracy. VLSI Design, International Conference on 2012, pp. 376–381 (2012). doi:10.1109/VLSID.2012.100
DasGupta, S., Mandal, P.: An improvised MOS transistor model suitable for geometric program based analog circuit sizing in sub-micron technology. VLSI Design, International Conference on 2010, pp. 294–299 (2010). doi:10.1109/VLSI.Design.2010.31
Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Application. Kluwer, Boston (2000)
Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009). doi:10.1007/s10898-008-9332-8
Floudas, C.A., Pardalos, P.M.: State of the Art in Global Optimization: Computational Methods and Applications. Kluwer, Boston (1996)
Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer, Boston (1999)
IBM/ILOG.: CPLEX 12.0 reference manual. http://www.ilog.com/products/cplex/ (2009)
Kallrath, J.: Exact computation of global minima of a nonconvex portfolio optimization problem. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 237–254. Kluwer, Boston (2003)
Li, H.L., Lu, H.C.: Global optimization for generalized geometric programs with mixed free-sign variables. Oper. Res. 57(3), 701–713 (2009). doi:10.1287/opre.1080.0586
Li, H.L., Lu, H.C., Huang, C.H., Hu, N.Z.: A superior representation method for piece-wise linear functions. INFORMS J. Comput. 21(2), 314–321 (2009)
Li, H.L., Huang, Y.H., Fang, S.C.: A logarithmic method for reducing zero-one variables and inequality constraints in solving task assignment problems. INFORMS J. Comput. 25(4), 643–653 (2012). doi:10.1287/ijoc.1120.0527
Li, W.: Energy efficient clustering algorithm in wireless sensor networks based on geometric programming. Second International Symposium on Electronic Commerce and Security, ISECS 2009, pp. 525–527 (2009). doi:10.1109/ISECS.2009.65
Lin, M.H., Tsai, J.F.: Finding multiple optimal solutions of signomial discrete programming problems with free variables. Optim. Eng. 12(3), 425–443 (2011). doi:10.1007/s11081-011-9137-3
LINGO, Release 12. Lindo System Inc: Chicago (2010)
Lu, H.C.: An efficient convexification method for solving generalized geometric problems. J. Ind. Manag. Optim. 8(2), 429–455 (2012). doi:10.3934/jimo.2012.8.429
Lu, H.C.: A logarithmic method for eliminating zero-one variables and constraints for the product of free-sign discrete functions. Discrete Optim. 10(1), 11–24 (2013). doi:10.1016/j.disopt.2012.10.001
Lu, H.C., Li, H.L., Gounaris, C.E., Floudas, C.A.: Convex relaxation for solving posynomial programs. J. Glob. Optim. 46(1), 147–154 (2010). doi:10.1007/s10898-009-9414-2
Lundell, A.: Transformation techniques for signomial functions in global optimization, Ph.D. Dissertation, Åbo Akademi University (2009)
Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. 43(2), 391–405 (2009). doi:10.1007/0-387-30528-9_3
Lundell, A., Westerlund, T.: Global optimization of mixed-integer signomial problems in Mixed Integer Nonlinear Programming. IMA Vol. Math. Appl. 154, 349–369 (2012)
Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4), 351–370 (1997). doi:10.1016/S0098-1354(96)00282-7
Mine, H., Ohno, K.: Decomposition of mathematical programming problems by dynamic programming and its applications to block diagonal geometric programming. J. Math. Anal. Appl. 32(2), 370–385 (1970). doi:10.1016/0022-247X(70)90303-3
Misener, R., Floudas, C.A.: A framework for globally optimizing mixed-integer signomial programs. J. Optim. Theory Appl. 161(3), 905–932 (2014). doi:10.1007/s10957-013-0396-3
Pörn, R., Harjunkosi, I., Westerlund, T.: Convexification of different classes of non-convex MINLP problems. Comput. Chem. Eng. 23(3), 439–448 (1999). doi:10.1016/S0098-1354(98)00305-6
Pörn, R., Björk, K.M., Westerlund, T.: Global solution of optimization problems with signomial parts. Discrete Optim. 5(1), 108–120 (2008). doi:10.1016/j.disopt.2007.11.005
Sandgren, E.: Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. 112(2), 223–229 (1990). doi:10.1115/1.2912596
Tsai, J.F., Li, H.L., Hu, N.Z.: Global optimization for signomial discrete programming problems in engineering design. Eng. Optim. 34(6), 613–622 (2002). doi:10.1080/03052150215719
Tasi, J.F., Lin, M.H.: An optimization approach for solving signomial discrete programming problems with free variables. Comput. Chem. Eng. 30(8), 1256–1263 (2006). doi:10.1016/j.compchemeng.2006.02.013
Tsai, J.F., Lin, M.H.: Global optimization of signomial mixed-integer nonlinear programming problems with free variables. J. Glob. Optim. 42(1), 39–49 (2008). doi:10.1007/s10898-007-9211-8
Tsai, J.F., Lin, M.H.: An improved framework for solving NLIPs with signomial terms in the objective or constraints to global optimality. Comput. Chem. Eng. 53(11), 44–54 (2013). doi:10.1016/j.compchemeng.2013.01.015
Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of zero-one variables and constraints. Math. Program. 128(1–2), 49–72 (2011). doi:10.1007/s10107-009-0295-4
Acknowledgments
This research is supported by the National Science Council of Taiwan under grants NSC 102-2410-H-030-063-MY3. The authors wish to thank the area editor, the associate editor, and the anonymous referees for providing insightful comments and suggestions, which have helped me improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lu, HC. Improved logarithmic linearizing method for optimization problems with free-sign pure discrete signomial terms. J Glob Optim 68, 95–123 (2017). https://doi.org/10.1007/s10898-016-0451-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-016-0451-3