Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

MSO: a framework for bound-constrained black-box global optimization algorithms

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This paper addresses a class of algorithms for solving bound-constrained black-box global optimization problems. These algorithms partition the objective function domain over multiple scales in search for the global optimum. For such algorithms, we provide a generic procedure and refer to as multi-scale optimization (MSO). Furthermore, we propose a theoretical methodology to study the convergence of MSO algorithms based on three basic assumptions: (a) local Hölder continuity of the objective function f, (b) partitions boundedness, and (c) partitions sphericity. Moreover, the worst-case finite-time performance and convergence rate of several leading MSO algorithms, namely, Lipschitzian optimization methods, multi-level coordinate search, dividing rectangles, and optimistic optimization methods have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. As the problem has been formulated as one of maximization, the words optimize, maximize and their conjugated forms are going to be used interchangeably.

  2. At \(t=1\), the root node gets evaluated J times and partitioned into K nodes; \(P=Q=1\) for all MSO algorithms, irrespective of their values at \(t>1\).

  3. This is the same x(n) of Eq. (2).

  4. Bounding the approximation error could be valid with a probability of \(\gamma \ge 0\). In such case, any related analysis holds with a probability of \(\gamma \).

  5. In this paper, we refer to the work of Piyavskii [43] and Shubert [56] by LO. Nevertheless, it should be noted that Strongin [60] independently employed the Lipschitz condition for optimization problems. While Piyavskii and Shubert used a priori given constant L, Strongin proposed to adaptively estimate the Lipschitz constant during the search.

  6. One function evaluation may belong to one or more nodes.

  7. We are treating MSO as an n-round sequential decision making process. For MSO algorithms, n may correspond to the number of iterations, evaluations, or expansions. All three quantities are interrelated. Generally, we mean by n the number of evaluations if not stated otherwise.

  8. we shall consider this presumption throughout our analysis. In other words, for n node expansions, there are Kn node evaluations.

  9. The purpose of presenting \(\acute{\ell }\) is to quantify how big \({\mathcal {X}}_\epsilon \) is, and consequently to introduce the near-optimality dimension (presented shortly). It does not always hold. Consider a constant function (e.g., \(f(x)=5\)), for which \(\acute{\ell }(x^*,x)\) should be 0. This violates the definition of \(\acute{\ell }\) with \(\acute{L}\) being a positive real constant. Nevertheless, it implies that \(\ell (x^*,x)=0\le \epsilon \;, \forall x \in {\mathcal {X}}\) and hence \({\mathcal {X}}_\epsilon ={\mathcal {X}}\). In other words, all the nodes at all depths have to be expanded to find the optimal node, yet each one of them is an optimal node. In summary, if \(\acute{\ell }\) does not exist, the whole search space is considered as \(\epsilon \)-optimal. Note that Assumption 1 implies \(\beta \ge \alpha \).

  10. The purpose of Theorem 1 is to provide a recipe for finite-time analysis of any proposed algorithm under MSO framework. Nonetheless, the recipe needs to know the behavior of the algorithm. As a possible behavior, we have just assumed that the algorithm, analyzed in Theorem 1, minimizes its depth.

  11. To the best of our knowledge, there is no finite-time analysis of DIRECT (only the consistency property \(\lim _{n\rightarrow \infty } r(n)= 0\) given by Jones et al. [29] which was proven again in [16] by Finkel and Kelley. Furthermore, they showed, based on nonsmooth analysis, that certain samples of DIRECT may converge to points that satisfy the necessary conditions for optimality defined by Clarke [8]).

  12. LO and DOO are hypothetical propositions for which only practical/adapted implementation exists.

References

  1. Archetti, F., Betrò, B.: A priori analysis of deterministic strategies for global optimization problems. Towards Global Optim. 2, 31 (1978)

    MATH  Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  MATH  Google Scholar 

  3. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, Belmont (1996)

    MATH  Google Scholar 

  4. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search methods. IEEE Trans. Acoust. Speech Signal Process. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  5. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  6. Chaput, J.C., Szostak, J.W.: Evolutionary optimization of a nonbiological atp binding protein for improved folding stability. Chem. Biol. 11(6), 865–874 (2004)

    Article  Google Scholar 

  7. Chaslot, G., Saito, J.T., Bouzy, B., Uiterwijk, J., Van Den Herik, H.J.: Monte-carlo strategies for computer go. In: Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, Namur, Belgium, pp. 83–91. Citeseer (2006)

  8. Clarke, F.H.: Nonsmooth analysis and optimization. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 847–853 (1983)

  9. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological hierarchies on edge-weighted graphs. In: Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 86–97. Springer (2013)

  10. Csendes, T., Ratz, D.: Subdivision direction selection in interval methods for global optimization. SIAM J. Numer. Anal. 34(3), 922–938 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Derbel, B., Preux, P.: Simultaneous optimistic optimization on the noiseless bbob testbed. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2010–2017 (2015). doi:10.1109/CEC.2015.7257132

  12. Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evtushenko, Y.G.: Numerical methods for finding global extrema (case of a non-uniform mesh). USSR Comput. Math. Math. Phys. 11(6), 38–54 (1971)

    Article  MATH  Google Scholar 

  14. Evtushenko, Y.G., Malkova, V., Stanevichyus, A.: Parallel global optimization of functions of several variables. Comput. Math. Math. Phys. 49(2), 246–260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Finkel, D., Kelley, C.: Additive scaling and the direct algorithm. J.Global Optim. 36(4), 597–608 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Finkel, D.E., Kelley, C.T.: Convergence analysis of the direct algorithm. NCSU Mathematics Department, Raleigh, NC (2004)

  17. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  18. Fowkes, J.M., Gould, N.I., Farmer, C.L.: A branch and bound algorithm for the global optimization of hessian lipschitz continuous functions. J. Global Optim. 56(4), 1791–1815 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gablonsky, J.: An implementation of the direct algorithm. Centre for Research in Scientific Computing, North Carolina State University, Tech. Rep. CRSC-TR98-29 (1998)

  20. Gablonsky, J.: Modifications of the direct algorithm. Ph.D. thesis, North Carolina State University, Raleigh, North Carolina (2001)

  21. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the direct algorithm. J. Global Optim. 21(1), 27–37 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization benchmarking 2012: Experimental setup. Tech. rep., INRIA (2012). http://coco.gforge.inria.fr/bbob2012-downloads

  23. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Tech. Rep. RR-6829, INRIA (2009). http://hal.inria.fr/inria-00362633/en/

  24. Hansen, P., Jaumard, B., Lu, S.H.: On the number of iterations of piyavskii’s global optimization algorithm. Math. Oper. Res. 16(2), 334–350 (1991). doi:10.1287/moor.16.2.334

    Article  MathSciNet  MATH  Google Scholar 

  25. Horst, R., Tuy, H.: On the convergence of global methods in multiextremal optimization. J. Optim. Theory Appl. 54(2), 253–271 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, J., Wang, Y., Zhou, E., Fu, M.C., Marcus, S.I.: A survey of some model-based methods for global optimization. In: Optimization, Control, and Applications of Stochastic Systems, pp. 157–179. Springer (2012)

  27. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Global Optim. 14(4), 331–355 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ivanov, V.: On optimal algorithms of minimization in the class of functions with the lipschitz condition. Inf. Process. 71, 1324–1327 (1972)

    MathSciNet  Google Scholar 

  29. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kvasov, D.E., Pizzuti, C., Sergeyev, Y.D.: Local tuning and partition strategies for diagonal go methods. Numer. Math. 94(1), 93–106 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

    Article  Google Scholar 

  33. Lai, T.L., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1), 4–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Laurence, A., Wolsey, G.L.N.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    MATH  Google Scholar 

  35. Liu, Q., Cheng, W.: A modified direct algorithm with bilevel partition. J. Global Optim. 60(3), 483–499 (2014). doi:10.1007/s10898-013-0119-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Mayne, D., Polak, E.: Outer approximation algorithm for nondifferentiable optimization problems. J. Optim. Theory Appl. 42(1), 19–30 (1984). doi:10.1007/BF00934131

    Article  MathSciNet  MATH  Google Scholar 

  37. Mladineo, F.H.: An algorithm for finding the global maximum of a multimodal, multivariate function. Math. Prog. 34(2), 188–200 (1986). doi:10.1007/BF01580583

    Article  MathSciNet  MATH  Google Scholar 

  38. Munos, R.: Optimistic optimization of a deterministic function without the knowledge of its smoothness. In: Advances in Neural Information Processing Systems, vol. 24, pp. 783–791. Curran Associates, Inc. (2011). http://papers.nips.cc/paper/4304-optimistic-optimization-of-a-deterministic-function-without-the-knowledge-of-its-smoothness.pdf

  39. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Global Optim. 59(2–3), 545–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)

    Book  MATH  Google Scholar 

  41. Pintér, J.: Globally convergent methods for \(n\)-dimensional multiextremal optimization. Optimization 17(2), 187–202 (1986)

  42. Pintér, J.: Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications, vol. 6. Springer Science & Business Media, Berlin (1995)

    Google Scholar 

  43. Piyavskii, S.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12(4), 57–67 (1972)

    Article  MATH  Google Scholar 

  44. Pošík, P.: Bbob-benchmarking the direct global optimization algorithm. In: GECCO ’09: Proceedings of the 11th annual conference companion on Genetic and evolutionary computation conference, pp. 2315–2320. ACM, New York, NY, USA (2009). doi:10.1145/1570256.1570323

  45. Pošík, P., Huyer, W., Pál, L.: A comparison of global search algorithms for continuous black box optimization. Evolut. Comput. 20(4), 509–541 (2012)

    Article  Google Scholar 

  46. Preux, P., Munos, R., Valko, M.: Bandits attack function optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2245–2252 (2014)

  47. Ratz, D., Csendes, T.: On the selection of subdivision directions in interval branch-and-bound methods for global optimization. J. Global Optim. 7(2), 183–207 (1995). doi:10.1007/BF01097060

    Article  MathSciNet  MATH  Google Scholar 

  48. The Morgridge Institute for Research, I.M.: Bound constrained optimization. http://www.neos-guide.org/content/bound-constrained-optimization

  49. Robbins, H., et al.: Some aspects of the sequential design of experiments. Bull. Am. Math. Soc. 58(5), 527–535 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  50. Roslund, J., Shir, O.M., Bäck, T., Rabitz, H.: Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control. Phys. Rev. A 80(4), 043–415 (2009)

    Article  Google Scholar 

  51. Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35(5), 705–717 (1995)

    MathSciNet  Google Scholar 

  52. Sergeyev, Y.D.: On convergence of divide the best global optimization algorithms. Optimization 44(3), 303–325 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal auxiliary functions. Commun. Nonlinear Scie. Numer. Simul. 21(1), 99–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sergeyev, Y.D., Strongin, R.G.: A global minimization algorithm with parallel iterations. USSR Comput. Math. Math. Phys. 29(2), 7–15 (1990)

    Article  MathSciNet  Google Scholar 

  56. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal. 9(3), 379–388 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  57. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.: Gaussian process optimization in the bandit setting: no regret and experimental design. In: 27th International Conference on Machine Learning (2010)

  58. Stover, C., Weisstein, E.W.: Hölder condition. MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/HoelderCondition.html

  59. Strongin, R.G.: Numerical methods in multi-extremal problems (information-statistical algorithms) (1978)

  60. Strongin, R.G.: On the convergence of an algorithm for finding a global extremum. Eng. Cybernet. 11, 549–555 (1973)

    MathSciNet  Google Scholar 

  61. Strongin, R.G., Sergeyev, Y.: Global Optimization and Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  62. Strongin, R.G., Sergeyev, Y.D.: Global multidimensional optimization on parallel computer. Parallel Comput. 18(11), 1259–1273 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  63. Sukharev, A.G.: Optimal strategies of the search for an extremum. USSR Comput. Math. Math. Phys. 11(4), 119–137 (1971)

    Article  MathSciNet  Google Scholar 

  64. Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, pp. 285–294 (1933)

  65. Torn, A., Zilinskas, A.: Global Optimization. Springer, New York (1989)

    Book  MATH  Google Scholar 

  66. Valko, M., Carpentier, A., Munos, R.: Stochastic simultaneous optimistic optimization. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 19–27 (2013)

  67. Wang, Z., Shakibi, B., Jin, L., de Freitas, N.: Bayesian multi-scale optimistic optimization. In: Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS 2014), pp. 1005–1014 (2014)

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments and suggestions that had improved the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suresh.

Additional information

This work was supported by Ministry of Education (MoE), Singapore through tier I (No. M4011269) funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Dujaili, A., Suresh, S. & Sundararajan, N. MSO: a framework for bound-constrained black-box global optimization algorithms. J Glob Optim 66, 811–845 (2016). https://doi.org/10.1007/s10898-016-0441-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0441-5

Keywords

Navigation