Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Reverse propagation of McCormick relaxations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Constraint propagation techniques have heavily utilized interval arithmetic while the application of convex and concave relaxations has been mostly restricted to the domain of global optimization. Here, reverse McCormick propagation, a method to construct and improve McCormick relaxations using a directed acyclic graph representation of the constraints, is proposed. In particular, this allows the interpretation of constraints as implicitly defining set-valued mappings between variables, and allows the construction and improvement of relaxations of these mappings. Reverse McCormick propagation yields potentially tighter enclosures of the solutions of constraint satisfaction problems than reverse interval propagation. Ultimately, the relaxations of the objective of a non-convex program can be improved by incorporating information about the constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This representation of a factorable function is also used in the reverse mode of automatic differentiation [20].

  2. Hereafter, we will not make this distinction explicitly in expressions. Rather it is always assumed tacitly.

References

  1. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Glob. Optim. 9, 23–40 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barták, R.: Theory and practice of constraint propagation. In: Proceedings of the 3rd Workshop on Constraint Programming in Decision and Control, pp. 7–14 (2001)

  3. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via fixed points. In: Wu, W., Daescu, O. (eds.) Combinatorial Optimization and Applications, vol. 6508, pp. 65–76. Springer, Berlin (2010)

  5. Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and boolean constraints. J. Logic Program. 32(1), 1–24 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP (intervals) revisited. In: Bruynooghe, M. (ed.) Proceedings of the 1994 International Symposium on Logic Programming, pp. 124–138. MIT Press, Cambridge (1994)

  7. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Proceedings of the International Conference on Logic Programming (ICLP’99), pp. 230–244. MIT Press, Cambridge (1999)

  8. Benhamou, F., Granvilliers, L., Goualard, F.: Interval constraints: results and perspectives. In: New Trends in Constraints, Lecture Notes in Artificial Intelligence vol. 1865, pp. 1–16. Springer, Berlin (2000)

  9. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 29–83. Elsevier, Amsterdam (2006). chap 3

    Chapter  Google Scholar 

  10. Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52, 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chachuat, B.: MC++—A Versatile Library for McCormick Relaxations and Taylor Models. http://www3.imperial.ac.uk/people/b.chachuat/research/ (2011)

  12. Cleary, J.G.: Logical arithmetic. Future Comput. Syst. 2(2), 124–149 (1987)

    Google Scholar 

  13. Davis, E.: Constraint propagation with interval labels. Artif. Intell. 32(3), 281–331 (1987)

    Article  MATH  Google Scholar 

  14. Dixon, L.C.W., Szego, G.P.: The optimization problem: an introduction. In: Dixon, L.C.W., Szego, G.P. (eds.) Towards Global Optimization. North Holland, New York (1978)

    Google Scholar 

  15. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Can. J. Math. 517–534 (1958)

  17. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15, 550–569 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2002)

    Article  MathSciNet  Google Scholar 

  19. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  20. Griewank, A., Walther, A.: Evaluating Derivatives, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2008)

    Book  MATH  Google Scholar 

  21. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  22. Hansen, P., Jaumard, B., Lu, S.H.: An analytical approach to global optimization. Math. Program. 52(1–3), 227–254 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)

    Google Scholar 

  24. Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  25. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  26. Hyvönen, E.: Constraint reasoning based on interval arithmetic: the tolerance propagation approach. Artif. Intell. 58(1–3), 71–112 (1992)

    Article  MATH  Google Scholar 

  27. Jaulin, L.: Solving set-valued constraint satisfaction problems. Computing 94(2–4), 297–311 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jaulin, L., Michel, K., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)

    Book  MATH  Google Scholar 

  29. Kappel, F., Kuntsevich, A.: An implementation of Shor’s r-algorithm. Comput. Optim. Appl. 15, 193–205 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kearfott, R.B., Nakao, M., Neumaier, A., Rump, S.M., Shary, S., Van Hentenryck, P.: Standardized notation in interval analysis. In: Proceedings of the XIII Baikal International School-seminar “Optimization methods and their applications”, vol. 4, pp. 106–113. Institute of Energy Systems SB RAS, Irkutsk, Russia (2005)

  31. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)

    MATH  Google Scholar 

  32. Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM J. Numer. Anal. 42(5), 2076 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lhomme, O.: Consistency techniques for numeric CSPs. In: International Joint Conference on Artificial Intelligence, pp. 232–238 (1993)

  34. Lukšan, L., Vlček, J.: Algorithm 811: NDA: algorithms for nondifferentiable optimization. ACM Trans. Math. Softw. 27, 193–213 (2001)

    Article  MATH  Google Scholar 

  35. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Optimization: Fortran Subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology, Series B, Scientific computing (B 13/2003), University of Jyväskylä, Jyväskylä (2003)

  37. Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  38. MATLAB.: Version 8.3.0 (R2014a). The MathWorks Inc., Natick, MA (2014)

  39. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Melquiond, G., Pion, S., Brönnimann, H.: Boost Interval Arithmetic Library. http://www.boost.org/doc/libs/1_49_0/ (2006)

  41. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20, 573–601 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  43. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  44. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles, A. (ed.) Acta Numerica, vol. 13, pp. 271–370. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  45. Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood, Chichester (1984)

    MATH  Google Scholar 

  46. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  47. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)

    Article  Google Scholar 

  48. Sahinidis, N.V., Tawarmalani, M.: BARON Solver Manual. http://gams.com/dd/docs/solvers/baron.pdf (2009)

  49. Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. Constraints 1(1–2), 85–118 (1996)

    Article  MathSciNet  Google Scholar 

  50. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob. Optim. 33(4), 541–562 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Scott, J.K.: Reachability Analysis and Deterministic Global Optimization of Differential-algebraic Systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2012)

  52. Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4), 569–606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction, pp. 211–222. Springer, Berlin (2003)

    Chapter  Google Scholar 

  54. Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)

    Article  Google Scholar 

  55. Stuber, M.D., Scott, J.K.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. (in press) (2014)

  56. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  57. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  59. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  60. Van Hentenryck, P., Michel, L., Benhamou, F.: Constraint programming over nonlinear constraints. Sci. Comput. Program. 30(1–2), 83–118 (1998)

    Article  MATH  Google Scholar 

  61. Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical constraint satisfaction problems with non-isolated solutions. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction, Lecture Notes in Computer Science, vol. 2861, pp. 194–210. Springer, Berlin (2003)

  62. Vu, X.H., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs for numerical constraint solving. J. Glob. Optim. 45(4), 499–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul I. Barton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wechsung, A., Scott, J.K., Watson, H.A.J. et al. Reverse propagation of McCormick relaxations. J Glob Optim 63, 1–36 (2015). https://doi.org/10.1007/s10898-015-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0303-6

Keywords

Mathematics Subject Classification

Navigation