Abstract
Constraint propagation techniques have heavily utilized interval arithmetic while the application of convex and concave relaxations has been mostly restricted to the domain of global optimization. Here, reverse McCormick propagation, a method to construct and improve McCormick relaxations using a directed acyclic graph representation of the constraints, is proposed. In particular, this allows the interpretation of constraints as implicitly defining set-valued mappings between variables, and allows the construction and improvement of relaxations of these mappings. Reverse McCormick propagation yields potentially tighter enclosures of the solutions of constraint satisfaction problems than reverse interval propagation. Ultimately, the relaxations of the objective of a non-convex program can be improved by incorporating information about the constraints.
Similar content being viewed by others
Notes
This representation of a factorable function is also used in the reverse mode of automatic differentiation [20].
Hereafter, we will not make this distinction explicitly in expressions. Rather it is always assumed tacitly.
References
Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Glob. Optim. 9, 23–40 (1996)
Barták, R.: Theory and practice of constraint propagation. In: Proceedings of the 3rd Workshop on Constraint Programming in Decision and Control, pp. 7–14 (2001)
Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4–5), 597–634 (2009)
Belotti, P., Cafieri, S., Lee, J., Liberti, L.: Feasibility-based bounds tightening via fixed points. In: Wu, W., Daescu, O. (eds.) Combinatorial Optimization and Applications, vol. 6508, pp. 65–76. Springer, Berlin (2010)
Benhamou, F., Older, W.J.: Applying interval arithmetic to real, integer, and boolean constraints. J. Logic Program. 32(1), 1–24 (1997)
Benhamou, F., McAllester, D., Van Hentenryck, P.: CLP (intervals) revisited. In: Bruynooghe, M. (ed.) Proceedings of the 1994 International Symposium on Logic Programming, pp. 124–138. MIT Press, Cambridge (1994)
Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box consistency. In: Proceedings of the International Conference on Logic Programming (ICLP’99), pp. 230–244. MIT Press, Cambridge (1999)
Benhamou, F., Granvilliers, L., Goualard, F.: Interval constraints: results and perspectives. In: New Trends in Constraints, Lecture Notes in Artificial Intelligence vol. 1865, pp. 1–16. Springer, Berlin (2000)
Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 29–83. Elsevier, Amsterdam (2006). chap 3
Bompadre, A., Mitsos, A.: Convergence rate of McCormick relaxations. J. Glob. Optim. 52, 1–28 (2012)
Chachuat, B.: MC++—A Versatile Library for McCormick Relaxations and Taylor Models. http://www3.imperial.ac.uk/people/b.chachuat/research/ (2011)
Cleary, J.G.: Logical arithmetic. Future Comput. Syst. 2(2), 124–149 (1987)
Davis, E.: Constraint propagation with interval labels. Artif. Intell. 32(3), 281–331 (1987)
Dixon, L.C.W., Szego, G.P.: The optimization problem: an introduction. In: Dixon, L.C.W., Szego, G.P. (eds.) Towards Global Optimization. North Holland, New York (1978)
Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429 (2010)
Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Can. J. Math. 517–534 (1958)
Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manag. Sci. 15, 550–569 (1969)
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2002)
Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)
Griewank, A., Walther, A.: Evaluating Derivatives, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2008)
Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis, 2nd edn. Marcel Dekker, New York (2004)
Hansen, P., Jaumard, B., Lu, S.H.: An analytical approach to global optimization. Math. Program. 52(1–3), 227–254 (1991)
Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)
Hooker, J.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, New York (2000)
Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)
Hyvönen, E.: Constraint reasoning based on interval arithmetic: the tolerance propagation approach. Artif. Intell. 58(1–3), 71–112 (1992)
Jaulin, L.: Solving set-valued constraint satisfaction problems. Computing 94(2–4), 297–311 (2012)
Jaulin, L., Michel, K., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)
Kappel, F., Kuntsevich, A.: An implementation of Shor’s r-algorithm. Comput. Optim. Appl. 15, 193–205 (2000)
Kearfott, R.B., Nakao, M., Neumaier, A., Rump, S.M., Shary, S., Van Hentenryck, P.: Standardized notation in interval analysis. In: Proceedings of the XIII Baikal International School-seminar “Optimization methods and their applications”, vol. 4, pp. 106–113. Institute of Energy Systems SB RAS, Irkutsk, Russia (2005)
Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Springer, Berlin (1985)
Lebbah, Y., Michel, C., Rueher, M., Daney, D., Merlet, J.P.: Efficient and safe global constraints for handling numerical constraint systems. SIAM J. Numer. Anal. 42(5), 2076 (2005)
Lhomme, O.: Consistency techniques for numeric CSPs. In: International Joint Conference on Artificial Intelligence, pp. 232–238 (1993)
Lukšan, L., Vlček, J.: Algorithm 811: NDA: algorithms for nondifferentiable optimization. ACM Trans. Math. Softw. 27, 193–213 (2001)
Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)
Mäkelä, M.M.: Multiobjective Proximal Bundle Method for Nonconvex Nonsmooth Optimization: Fortran Subroutine MPBNGC 2.0. Reports of the Department of Mathematical Information Technology, Series B, Scientific computing (B 13/2003), University of Jyväskylä, Jyväskylä (2003)
Mäkelä, M.M., Neittaanmäki, P.: Nonsmooth Optimization. World Scientific, Singapore (1992)
MATLAB.: Version 8.3.0 (R2014a). The MathWorks Inc., Natick, MA (2014)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10, 147–175 (1976)
Melquiond, G., Pion, S., Brönnimann, H.: Boost Interval Arithmetic Library. http://www.boost.org/doc/libs/1_49_0/ (2006)
Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20, 573–601 (2009)
Moore, R.E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)
Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. In: Iserles, A. (ed.) Acta Numerica, vol. 13, pp. 271–370. Cambridge University Press, Cambridge (2004)
Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood, Chichester (1984)
Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)
Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)
Sahinidis, N.V., Tawarmalani, M.: BARON Solver Manual. http://gams.com/dd/docs/solvers/baron.pdf (2009)
Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints. Constraints 1(1–2), 85–118 (1996)
Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. J. Glob. Optim. 33(4), 541–562 (2005)
Scott, J.K.: Reachability Analysis and Deterministic Global Optimization of Differential-algebraic Systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (2012)
Scott, J.K., Stuber, M.D., Barton, P.I.: Generalized McCormick relaxations. J. Glob. Optim. 51(4), 569–606 (2011)
Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction, pp. 211–222. Springer, Berlin (2003)
Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997)
Stuber, M.D., Scott, J.K.: Convex and concave relaxations of implicit functions. Optim. Methods Softw. (in press) (2014)
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming. Kluwer, Dordrecht (2002)
Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)
Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)
Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)
Van Hentenryck, P., Michel, L., Benhamou, F.: Constraint programming over nonlinear constraints. Sci. Comput. Program. 30(1–2), 83–118 (1998)
Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical constraint satisfaction problems with non-isolated solutions. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction, Lecture Notes in Computer Science, vol. 2861, pp. 194–210. Springer, Berlin (2003)
Vu, X.H., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs for numerical constraint solving. J. Glob. Optim. 45(4), 499–531 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wechsung, A., Scott, J.K., Watson, H.A.J. et al. Reverse propagation of McCormick relaxations. J Glob Optim 63, 1–36 (2015). https://doi.org/10.1007/s10898-015-0303-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-015-0303-6