Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Surrogate-RLT cuts for zero–one integer programs

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we consider the class of 0–1 integer problems and develop an effective cutting plane algorithm that gives valid inequalities called surrogate-RLT cuts (SR cuts). Here we implement the surrogate constraint analysis along with the reformulation–linearization technique (RLT) to generate strong valid inequalities. In this approach, we construct a tighter linear relaxation by augmenting SR cuts to the problem. The level-\(d\) SR closure of a 0–1 integer program is the polyhedron obtained by intersecting all the SR cuts obtained from RLT polyhedron formed over each set of \(d\) variables with its initial formulation. We present an algorithm for approximately optimizing over the SR closure. Finally, we present the computational result of SR cuts for solving 0–1 integer programming problems of well-known benchmark instances from MIPLIB 3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, W.P., Sherali, H.D.: RLT insights into lift-and-project closures. Optim. Lett. 9, 19–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas, E., Ceria, S., Cornuejóls, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42, 1229–1246 (1996)

    Article  MATH  Google Scholar 

  3. Balas, E., Saxena, A.: Optimizing over the split closure. Math. Program. A 113, 219–240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4, 151–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonami, P., Cornuejóls, G., Dash, S., Fischetti, M., Lodi, A.: Projected Chvátal–Gomory cuts for mixed integer linear programs. Math. Program. A 113, 241–257 (2008)

    Article  MATH  Google Scholar 

  6. Bonami, P., Minoux, M.: Using rank-1 lift-and-project closures to generate cuts for 0–1 MIPs, a computational investigation. Discrete Optim. 2, 288–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders’ cuts. Math. Program. B 124, 175–182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Glover, F., Sherali, H.D.: Foundation-penalty cuts for mixed-integer programs. Oper. Res. Lett. 31, 245–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Glover, F., Sherali, H.D.: A class of multi-level balanced foundation-penalty cuts for mixed-integer programs. Int. J. Comput. Sci. Eng. 3, 203–210 (2007)

    Article  Google Scholar 

  10. Glover, F., Sherali, H.D., Lee, Y.: Generating cuts from surrogate constraint analysis for zero–one and multiple choice programming. Comput. Optim. Appl. 8, 151–172 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley Inc., New York, NY (2001)

    MATH  Google Scholar 

  12. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero–one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero–one programming problems. Discrete Appl. Math. 52, 83–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sherali, H.D., Lee, Y.: Sequential and simultaneous liftings of minimal cover inequalities for generalized upper bound constrained knapsack polytopes. SIAM J. Discrete Math. 8, 133–153 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sherali, H.D., Lee, Y.: Tighter representations for set partitioning problems. Discrete Appl. Math. 68, 153–167 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sherali, H.D., Lee, Y., Adams, W.P.: A simultaneous lifting strategy for identifying new classes of facets for the Boolean quadric polytope. Oper. Res. Lett. 17, 19–26 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sherali, H.D., Lee, Y., Kim, Y.: Partial convexification cuts for 0–1 mixed-integer programs. Eur. J. Oper. Res. 165, 625–648 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sherali, H.D., Lunday, B.J.: On generating maximal nondominated Benders cuts. Ann. Oper. Res. 210, 57–72 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sherali, H.D., Smith, J.C.: Higher-level RLT or disjunctive cuts based on a partial enumeration strategy for 0–1 mixed-integer programs. Optim. Lett. 6, 127–139 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program and Global Ph.D Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2012R1A1A2006847, NRF-2012H1A2A1005160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngho Lee.

Additional information

This paper is dedicated to Professor Hanif D. Sherali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuh, J., Lee, Y. Surrogate-RLT cuts for zero–one integer programs. J Glob Optim 66, 173–193 (2016). https://doi.org/10.1007/s10898-015-0297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-015-0297-0

Keywords

Navigation